917 resultados para Causal loops
Resumo:
La marchitez bacteriana de la papa causada por Ralstonia solanacearum (E. F. Smith) es una de las principales limitantes en la producción de es te cultivo. R.olanacearum es una especie altamente variable, el estudio de su diversidad poblacional es un importante factor a considerar para su control. Con el objetivo de conocer la distribución y la variabilidad, se realizó un estudio durante el período comprendido de Septiembre de 2006 a Enero de 2007, en diferentes localidades distribuidas en tres departamentos de Nicaragua (Estelí, Matagalpa y Jinotega ), donde se recolectaron 18 muestras de tejidos vegetales (tubérculos y tallos) de papa (Solanum tuberosum L.) y suelo, las que fueron analizadas en laboratorio de Microbiología de la Universidad Nacional Agraria (UNA), para el aislamiento, identificación y multiplicación de la bacteria. Se realizaron siembras en plato petri que contenían medio de cultivo medio agar sacarosa-peptona. Posterior a su aislamiento se realizó purificación en un medio específico (tetrazolium). Las cepas bacterianas se identificaron mediante la determinación de características culturales, morfológicas, fisiológicas y bioquímicas. En el primer caso, se observaron características de borde, elevación, consistencia y color de las cepas individuales cultivadas en el medio agar sacarosa- peptona. Las características morfológicas se comprobaron a través observación en el microscopio óptico. La confirmación de las características fisiológicas y bioquímicas, se realizó a través de pruebas de KOH al 3%, oxidasa, catalasa y revelación de flagelos. Las colonias bacterianas identificadas como Ralstonia solanacearun, se les realizó la prueba de carbohidratos para la caracterización de biovares, basada en la utilización de azúcares y oxidación de alcoholes (Hayward, 1991). Las pruebas de hipersensibilidad se realizaron en plantas de tabaco (Nicotiana tabacumL.). Estas fueron inoculadas mediante la infiltración de la suspensión bacteriana de 24 hrs de crecimiento. Como resultado de la prueba, se identificaron dieciséis aislamientos pertenecientes al biovar 3 y dos aislamientos pertenecientes al biovar 1. Siendo el biovar 3 el más prevaleciente en los sitios de muestro. La raza fue identificada en base a sintomatología presentada, resultando ser la raza 1.
Resumo:
Resumen: El Modelo de Red Causal propone que la estructura causal de una historia y su representación en la memoria episódica se asemejan a una red, en la que los acontecimientos resultan de una combinación de antecedentes causales, que a su vez tienen múltiples consecuencias. El estudio de la comprensión de textos según este modelo ha tendido a llevarse a cabo utilizando textos experimentales en inglés. En razón de ello, el objetivo de este trabajo consistió en presentar la aplicación del Modelo de Red Causal a un texto narrativo natural en español, a fin de abogar por su utilidad para examinar los procesos cognitivos involucrados en la comprensión textual.
Resumo:
La presente investigación fue realizada en la estación experimental del café de Masatepe; Nicaragua, durante los meses de Julio a Enero de los años 1975 a 1976. Consistió en la evaluación de doce Fungicidas para controlar Cercospera Coffeicole, agente causal de la “Mancha de Hierro “ en viveros de café. Como fuente de inòculo se utilizó plántulas infestadas por C. coffeicola; alrededor del ensayo. Para evaluar los daños ocasionados por este patógeno así como la fitotoxicidad de los productos sobre las plántulas, se utilizó el índice de infección propuesto por Grangier (24) y se elaboró una escala de fitotoxicidad, efectuándose un análisis de varianza en forma de parcelas divididas para determinar los efectos de los fungicidas y la fecha de mayor incidencia con los índices de o infección obtenidos. Basados en el índice de infección, Vigor de las plántulas y grado de fitotoxicidad los mejores fungicidas fueron: Difectatàn, MK-23, Kocide “101, Dithare M45 y cupravit ob-21 en dosis de 4, 4. 3.5.5 y 5 gramos de material comercial por litro de agua respectivamente. La mayor incidencia de C. Coffeicola se produjo durante el mes de Septiembre, elaborando su cuadro epidemiológico con el conjunto de datos climáticos
Resumo:
The paper presents a vector model for a Brushless Doubly-Fed Machine (BDFM). The BDFM has 4 and 8 pole stator windings and a nested-loop rotor cage. The rotor cage has six nests equally spaced around the circumference and each nest comprises three loops. All the rotor loops are short circuited via a common end-ring at one end. The vector model is derived based on the electrical equations of the machine and appropriate vector transformations. In contrast to the stator, there is no three phase circuit in the rotor. Therefore, the vector transformations suitable for three phase circuits can not be utilised for the rotor circuit. A new vector transformation is employed for the rotor circuit quantities. The approach presented in this paper can be extended for a BDFM with any stator poles combination and any number of loops per nest. Simulation results from the model implemented in Simulink are presented. © 2008 IEEE.
Resumo:
Bulges are common features of folded RNA structures. The RNA axial kinking caused by bulges has been confirmed by many experiments. Usually, a kinking angle zeta and a bending angle theta are used to describe the kinking and twisting of RNA molecules containing bulges. Here, we present two additional angles (twist angle zeta(1), twist angle zeta(2)) to describe the deformation of RNA helices induced by bulge loops because only two angles (a kinking angle zeta and a bending angle theta) are not enough to define the deformation of RNA induced by bulges. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We present algorithms for tracking and reasoning of local traits in the subsystem level based on the observed emergent behavior of multiple coordinated groups in potentially cluttered environments. Our proposed Bayesian inference schemes, which are primarily based on (Markov chain) Monte Carlo sequential methods, include: 1) an evolving network-based multiple object tracking algorithm that is capable of categorizing objects into groups, 2) a multiple cluster tracking algorithm for dealing with prohibitively large number of objects, and 3) a causality inference framework for identifying dominant agents based exclusively on their observed trajectories.We use these as building blocks for developing a unified tracking and behavioral reasoning paradigm. Both synthetic and realistic examples are provided for demonstrating the derived concepts. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
We provide a cooperative control algorithm to stabilize symmetric formations to motion around closed curves suitable for mobile sensor networks. This work extends previous results for stabilization of symmetric circular formations. We study a planar particle model with decentralized steering control subject to limited communication. Because of their unique spectral properties, the Laplacian matrices of circulant graphs play a key role. We illustrate the result for a skewed superellipse, which is a type of curve that includes circles, ellipses, and rounded parallelograms. © 2007 Elsevier B.V. All rights reserved.
Resumo:
Spectral properties of a double quantum dot (QD) structure are studied by a causal Green's function (GF) approach. The double QD system is modeled by an Anderson-type Hamiltonian in which both the intra- and interdot Coulomb interactions are taken into account. The GF's are derived by an equation-of-motion method and the real-space renormalization-group technique. The numerical results show that the average occupation number of electrons in the QD exhibits staircase features and the local density of states depends appreciably on the electron occupation of the dot.
Resumo:
Let Q be a conjugacy closed loop, and N(Q) its nucleus. Then Z(N(Q)) contains all associators of elements of Q. If in addition Q is diassociative (i.e., an extra loop), then all these associators have order 2. If Q is power-associative and |Q| is finite and relatively prime to 6, then Q is a group. If Q is a finite non-associative extra loop, then 16 ∣ |Q|.
Resumo:
When we reason about change over time, causation provides an implicit preference: we prefer sequences of situations in which one situation leads causally to the next, rather than sequences in which one situation follows another at random and without causal connections. In this paper, we explore the problem of temporal reasoning --- reasoning about change over time --- and the crucial role that causation plays in our intuitions. We examine previous approaches to temporal reasoning, and their shortcomings, in light of this analysis. We propose a new system for causal reasoning, motivated action theory, which builds upon causation as a crucial preference creterion. Motivated action theory solves the traditional problems of both forward and backward reasoning, and additionally provides a basis for a new theory of explanation.
Resumo:
This thesis examines the problem of an autonomous agent learning a causal world model of its environment. Previous approaches to learning causal world models have concentrated on environments that are too "easy" (deterministic finite state machines) or too "hard" (containing much hidden state). We describe a new domain --- environments with manifest causal structure --- for learning. In such environments the agent has an abundance of perceptions of its environment. Specifically, it perceives almost all the relevant information it needs to understand the environment. Many environments of interest have manifest causal structure and we show that an agent can learn the manifest aspects of these environments quickly using straightforward learning techniques. We present a new algorithm to learn a rule-based causal world model from observations in the environment. The learning algorithm includes (1) a low level rule-learning algorithm that converges on a good set of specific rules, (2) a concept learning algorithm that learns concepts by finding completely correlated perceptions, and (3) an algorithm that learns general rules. In addition this thesis examines the problem of finding a good expert from a sequence of experts. Each expert has an "error rate"; we wish to find an expert with a low error rate. However, each expert's error rate and the distribution of error rates are unknown. A new expert-finding algorithm is presented and an upper bound on the expected error rate of the expert is derived.
Resumo:
This report describes a paradigm for combining associational and causal reasoning to achieve efficient and robust problem-solving behavior. The Generate, Test and Debug (GTD) paradigm generates initial hypotheses using associational (heuristic) rules. The tester verifies hypotheses, supplying the debugger with causal explanations for bugs found if the test fails. The debugger uses domain-independent causal reasoning techniques to repair hypotheses, analyzing domain models and the causal explanations produced by the tester to determine how to replace faulty assumptions made by the generator. We analyze the strengths and weaknesses of associational and causal reasoning techniques, and present a theory of debugging plans and interpretations. The GTD paradigm has been implemented and tested in the domains of geologic interpretation, the blocks world, and Tower of Hanoi problems.