940 resultados para Cattle Reproduction
Resumo:
The placenta of mammals is a structure formed by the juxtaposition of the fetal membranes and the maternal tissues. The main function of the placenta is to regulate the physiological interchange between the fetus and the mother as well as to operate as an important endocrine organ during the gestation. The placentomal fusions were characterized throughout gestation of cattle using macroscopic, histological and flow cytometry analyses. Analyzing the cell cycle phases with a flow cytometry, a balance between the G2M phase and apoptosis was observed, suggesting that the placentomal fusions do not interfere in the placentary maturation process, which is a pre-requirement for the fetal-maternal disconnection and the release of fetal membrane. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Although cloning of mammals has been achieved successfully, the percentage of live offspring is very low because of reduced fetal size and fewer implantation sites. Recent studies have attributed such pathological conditions to abnormal reprogramming of the donor cell used for cloning. The inability of the oocyte to fully restore the differentiated status of a somatic cell to its pluripotent and undifferentiated state is normally evidenced by aberrant DNA methylation patterns established throughout the genome during development to blastocyst. These aberrant methylation patterns are associated with abnormal expression of imprinted genes, which among other genes are essential for normal embryo development and gestation. We hypothesized that embryo loss and low implantation rates in cattle derived by somatic cell nuclear transfer (SCNT) are caused by abnormal epigenetic reprogramming of imprinted genes. To verify our hypothesis, we analyzed the parental expression and the differentially methylated domain (DMD) methylation status of the H19 gene. Using a parental-specific analysis, we confirmed for the first time that H19 biallelic expression is tightly associated with a severe demethylation of the paternal H19 DMD in SCNT embryos, suggesting that these epigenetic anomalies to the H19 locus could be directly responsible for the reduced size and low implantation rates of cloned embryos in cattle.
Resumo:
The production of a healthy cloned calf is dependent on a multitude of successful steps, including reprogramming mediated by the oocyte, the development of a functional placenta, adequate maternal-fetal interaction, the establishment of a physiological metabolic setting and the formation of a complete set of well-differentiated cells that will eventually result in well-characterised and fully competent tissues and organs. Although the efficiency of nuclear transfer has improved significantly since the first report of a somatic cell nuclear transfer-derived animal, there are many descriptions of anomalies concerning cloned calves leading to high perinatal morbidity and mortality. The present article discusses some our experience regarding perinatal and neonatal procedures for cloned Zebu cattle (B. indicus) that has led to improved survival rates in Nellore cloned calves following the application of such `labour-intensive technology`.
Resumo:
The extensive replication of mitochondria during oogenesis and the wide variability in mitochondrial DNA ( mtDNA) copy numbers present in fully grown oocytes indicate that mtDNA amount may play an important role during early embryogenesis. Using bovine oocytes derived from follicles of different sizes to study the influence of mtDNA content on development, we showed that oocytes obtained from small follicles, known to be less competent in developing into blastocysts, contain less mtDNA than those originating from larger follicles. However, because of the high variability in copy number, a more accurate approach was examined in which parthenogenetic one-cell embryos were biopsied to measure their mtDNA content and then cultured to assess development capacity. Contrasting with previous findings, mtDNA copy number in biopsies was not different between competent and incompetent embryos, indicating that mtDNA content is not related to early developmental competence. To further examine the importance of mtDNA on development, one-cell embryos were partially depleted of their mtDNA (64% +/- 4.1% less) by centrifugation followed by the removal of the mitochondrial-enriched cytoplasmic fraction. Surprisingly, depleted embryos developed normally into blastocysts, which contained mtDNA copy numbers similar to nonmanipulated controls. Development in depleted embryos was accompanied by an increase in the expression of genes (TFAM and NRF1) controlling mtDNA replication and transcription, indicating an intrinsic ability to restore the content of mtDNA at the blastocyst stage. Therefore, we concluded that competent bovine embryos are able to regulate their mtDNA content at the blastocyst stage regardless of the copy numbers accumulated during oogenesis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Restricted breeding seasons used in beef cattle produce censored data for reproduction traits measured in regard to these seasons. To analyze these data, adequate methods must be used. The objective of this paper was to compare three approaches aiming to evaluate sexual precocity in Nellore cattle. The final data set contained 6699 records of age at first conception (AFC14) (in days) and of heifer pregnancy (HP14) (binary) obtained from females exposed to the bulls for the first time at about 14 months of age. Records of females that did not calve in the following year after being exposed to a sire were considered censored (77.5% of total). The models used to obtain genetic parameters and expected progeny differences (EPDs) were a Weibull mixed and a censored linear model for AFC14 and threshold model for HP14. The mean heritabilities obtained were 0.76 and 0.44, respectively, for survival and censored linear models (for AFC14), and 0.58 for HP14. Ranking and Pearson correlations varied (in absolute values) from 0.54 to 0.99 (considering different percentages of sires selected), indicating moderate changes in the classification. Considering survival analysis as the best selection criterion (that would result in the best response to selection), it was observed that selection for HP14 would lead to a more significant decrease in selection response if compared with selection for AFC14 analysed by censored linear model, from which results were very similar to the survival analysis.
Resumo:
Mammalian oocytes can undergo spontaneous meiotic maturation when they are liberated from their follicles and cultured in vitro; however, the zona pellucida (ZP) becomes resistant to chymotrypsin digestion, or hardens, when spontaneous maturation occurs in serum-free medium. Schroeder et al. [Biol. Reprod. 43 (1990) 891] described that fetuin, a component of fetal calf serum (FCS), inhibits ZP hardening during oocyte maturation. The aim of this experiment was to study the effect of the presence of cumulus cells and addition of hormones to maturation media on bovine zona hardening and embryo development in medium with and without fetuin. In Experiment 1, different concentrations of fetuin were added to the maturation medium. The time necessary for digestion of 50% of the ZP (d50) was not different when oocytes were matured in presence of 10% FCS, 1 mg/ml polyvinyl alcohol (PVA), or 4, 1 and 0.25 mg/ml of fetuin; cleavage rates were also similar. However, significantly more blastocysts (P < 0.05) were formed when FCS was used compared to PVA and 0.25 mg/ml of fetuin. In Experiment 11, we examined the influence of the presence of cumulus cells and hormones during the maturation of oocytes in media with PVA, BSA, FCS and fetuin. The d50 was significantly higher (P < 0.05) when oocytes were matured in presence of cumulus cells. The cleavage rate of cumulus-intact oocytes was similar for all groups. However, when oocytes were partially stripped before maturation, the cleavage rate was significantly higher (P < 0.05) when FCS or fetuin was used. In both stripped and non-stripped groups, significantly more blastocysts (P < 0.05) were formed when oocytes were matured with FCS compared to BSA and PVA. These results indicate that zona hardening, as described for mouse and human oocytes, does not have a large effect on bovine cumulus-intact oocytes. Apparently fetuin can be used as a substitute for FCS during bovine oocyte maturation, since it leads to similar developmental rates as FCS in intact and partially stripped oocytes. (C) 2002 Published by Elsevier B.V. B.V.
Resumo:
Data on fertilisation and embryo quality in dairy cattle are presented and the main factors responsible for the low fertility of single-ovulating lactating cows and embryo yield in superovulated dairy cattle are highlighted. During the past 50 years, the fertility in high-producing lactating dairy cattle has decreased as milk production increased. Recent data show conception rates to first service to be approximately 32% in lactating cows, whereas in heifers it has remained above 50%. Fertilisation does not seem to be the principal factor responsible for the low fertility in single-ovulating cows, because it has remained above 80%. Conversely, early embryonic development is impaired in high-producing dairy cows, as observed by most embryonic losses occurring during the first week after fertilisation. However, in superovulated dairy cattle, although fertilisation failure is more pronounced, averaging approximately 45%, the percentage of fertilised embryos viable at 1 week is quite high (>70%). Among the multifactorial causes of low fertility in lactating dairy cows, high feed intake associated with low concentrations of circulating steroids may contribute substantially to reduced embryo quality. Fertilisation failure in superovulated cattle may be a consequence of inappropriate gamete transport due to hormonal imbalances.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Embryo transfer is a biotechnology that has been used worldwide to increase the production of offspring from female bovines. Treatments to induce multiple ovulations (superovulation) have evolved from superstimulatory protocols that depended upon detection of oestrus to treatments that synchronise follicle growth and ovulation, allowing for improved donor management and fixed-timed AI (FTAI). The protocols associated with FTAI facilitate animal handling and produce at least as many viably embryos as conventional treatment protocols that required detection of oestrus. Recent knowledge regarding LH receptors (LHR) and follicular development can be applied to improve embryo transfer protocols. In fact, improvements in the superstimulatory treatment called the 'P-36 protocol', which include hormones that stimulate LHR, indicate that adjustments related to LHR availability may increase bovine embryo yield compared with conventional protocols based on the detection of oestrus.
Resumo:
Extracellular matrix remodeling occurs during ovarian follicular development, mediated by plasminogen activators (PAs) and PA inhibitors including protease nexin-1 (PN-1). In the present study we measured expression/activity of the PA system in bovine follicles at different stages of development by timed collection of ovaries during the first follicular wave and during the periovulatory period, and in follicles collected from an abattoir. The abundance of mRNA encoding PN-1, tissue-type PA (tPA), urokinase (uPA) and PA inhibitor-1 (PAI-1) were initially upregulated by human chorionic gonadotropin (hCG) in bovine preovulatory follicular wall homogenates. PN-1, PAI-1 and tPA mRNA expression then decreased near the expected time of ovulation, whereas uPA mRNA levels remained high. PN-1 concentration in follicular fluid (FF) decreased and reached the lowest level at the time of ovulation, whereas plasmin activity in FF increased significantly after hCG. Follicles collected from the abattoir were classified as non-atretic, early-atretic or atretic based on FF estradiol and progesterone content: PN-1 protein levels in FF were significantly higher in non-atretic than in atretic follicles, and plasmin activity was correspondingly higher in the atretic follicles. No changes in PN-1 levels in FF were observed during the growth of pre-deviation follicles early in a follicular wave. These results indicate that PN-1 may be involved in the process of atresia in non-ovulatory dominant follicles and the prevention of precocious proteolysis in periovulatory follicles.
Resumo:
Puberty in Zebu heifers follows a pattern characterized by a decrease in the steroid feedback mechanism and an increase in LH concentration, which result in the first ovulation followed by a short estrous cycle and the onset of normal cycles thereafter. These events are similar to those observed in Bos taurus cattle but occur at a later age. The late onset of puberty is both genetic and environmental in origin and is reflected by the age at first calving that can be at 40 months of age or older in these animals. Age at puberty in Zebu heifers has been shown to have a high heritability. Consequently, selecting precocious heifers may be an effective means of reducing age at puberty in these animals and this approach is being adopted in commercial practice. Genetic selection is not the sole solution to the problem because environmental improvements are necessary, particularly in terms of improved nutrition. South American Zebu cattle are usually subject to sub-optimum nutritional and management conditions and, hence, exhibit late onset of puberty. Hybrids of Zebu and Bos taurus cattle exhibit heterosis in respect of the age of puberty with earlier onset than expected in crossbred animals. Recently, purebred South American Zebu cattle have been shown to have Bos taurus genes, indicating that there have been previous attempts to improve their productivity using this approach. It was concluded that the age at first calving in South American Zebu cattle can be reduced by exposing well-fed, yearling heifers to bulls and selecting, over several generations, those animals that become pregnant at an early age. (C) 2004 Published by Elsevier B.V.