50 resultados para Cassano, Iacome


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta tesis tiene como finalidad profundizar en la regulación emocional de la tristeza, el enfado y la preocupación de los niños con altas capacidades intelectuales (AC). Además, estos se clasificaron según su estilo de relación social en: pasivos, asertivos o agresivos, y se comprobó la relación entre inhibición emocional y pasividad en la muestra. Para ello se recogió información sobre un total de 203 niños de la Comunidad de Madrid, de 9 a 11 años de edad. 101 con un CI > 129, evaluados a través de la Escala de Inteligencia de Wechsler para niños (2005), adaptación española de Wechsler Intelligence Scale for Children, Fourth Edition (WISC-IV, Wechsler, 2003), y 102 sujetos del mismo rango de edad, con capacidad intelectual media (CM) (CI 100-128). Para medir por separado las estrategias de gestión de las tres emociones, se usaron las Escalas de Manejo Emocional para Niños (EME): tristeza, enfado y preocupación (Children’s Emotion Management Scales (CEMS): sadness (CSMS), anger (CAMS) and worry (CWMS), Zeman, Shipman y Penza-Clyve, 2001; Zeman, Cassano, Suveg, y Shipman, 2010). Para estudiar las habilidades sociales de los sujetos, se escogió el Cuestionario para Evaluar la Asertividad (CEA, De la Peña, Hernández y Rodríguez, 2003), adaptación española del Childreńs Assertive Behaviour Scale, CABS, (Wood, Michelson y Flynn, 1978)...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis mainly concerns the study of intrinsically regular submanifolds of low codimension in the Heisenberg group H^n, called H-regular surfaces of low codimension, from the point of view of geometric measure theory. We consider an H-regular surface of H^n of codimension k, with k between 1 and n, parametrized by a uniformly intrinsically differentiable map acting between two homogeneous complementary subgroups of H^n, with target subgroup horizontal of dimension k. In particular the considered submanifold is the intrinsic graph of the parametrization. We extend various results of Ambrosio, Serra Cassano and Vittone, available for the case when k = 1. We prove that the uniform intrinsic differentiability of the parametrizing map is equivalent to the existence and continuity of its intrinsic differential, to the local existence of a suitable approximating family of Euclidean regular maps, and, when the domain and the codomain of the map are orthogonal, to the existence and continuity of suitably defined intrinsic partial derivatives of the function. Successively, we present a series of area formulas, proved in collaboration with V. Magnani. They allow to compute the (2n+2−k)-dimensional spherical Hausdorff measure and the (2n+2−k)-dimensional centered Hausdorff measure of the parametrized H-regular surface, with respect to any homogeneous distance fixed on H^n. Furthermore, we focus on (G,M)-regular sets of G, where G and M are two arbitrary Carnot groups. Suitable implicit function theorems ensure the local existence of an intrinsic parametrization of such a set, at any of its points. We prove that it is uniformly intrinsically differentiable. Finally, we prove a coarea-type inequality for a continuously Pansu differentiable function acting between two Carnot groups endowed with homogeneous distances. We assume that the level sets of the function are uniformly lower Ahlfors regular and that the Pansu differential is everywhere surjective.