885 resultados para Case-based reasoning system
Resumo:
It is well known that rib cage dimensions depend on the gender and vary with the age of the individual. Under this setting it is therefore possible to assume that a computational approach to the problem may be thought out and, consequently, this work will focus on the development of an Artificial Intelligence grounded decision support system to predict individual’s age, based on such measurements. On the one hand, using some basic image processing techniques it were extracted such descriptions from chest X-rays (i.e., its maximum width and height). On the other hand, the computational framework was built on top of a Logic Programming Case Base approach to knowledge representation and reasoning, which caters for the handling of incomplete, unknown, or even contradictory information. Furthermore, clustering methods based on similarity analysis among cases were used to distinguish and aggregate collections of historical data in order to reduce the search space, therefore enhancing the cases retrieval and the overall computational process. The accuracy of the proposed model is satisfactory, close to 90%.
Resumo:
Knee osteoarthritis is the most common type of arthritis and a major cause of impaired mobility and disability for the ageing populations. Therefore, due to the increasing prevalence of the malady, it is expected that clinical and scientific practices had to be set in order to detect the problem in its early stages. Thus, this work will be focused on the improvement of methodologies for problem solving aiming at the development of Artificial Intelligence based decision support system to detect knee osteoarthritis. The framework is built on top of a Logic Programming approach to Knowledge Representation and Reasoning, complemented with a Case Based approach to computing that caters for the handling of incomplete, unknown, or even self-contradictory information.
Resumo:
This paper presents a case-based heuristic selection approach for automated university course and exam timetabling. The method described in this paper is motivated by the goal of developing timetabling systems that are fundamentally more general than the current state of the art. Heuristics that worked well in previous similar situations are memorized in a case base and are retrieved for solving the problem in hand. Knowledge discovery techniques are employed in two distinct scenarios. Firstly, we model the problem and the problem solving situations along with specific heuristics for those problems. Secondly, we refine the case base and discard cases which prove to be non-useful in solving new problems. Experimental results are presented and analyzed. It is shown that case based reasoning can act effectively as an intelligent approach to learn which heuristics work well for particular timetabling situations. We conclude by outlining and discussing potential research issues in this critical area of knowledge discovery for different difficult timetabling problems.
Resumo:
This paper presents a case-based heuristic selection approach for automated university course and exam timetabling. The method described in this paper is motivated by the goal of developing timetabling systems that are fundamentally more general than the current state of the art. Heuristics that worked well in previous similar situations are memorized in a case base and are retrieved for solving the problem in hand. Knowledge discovery techniques are employed in two distinct scenarios. Firstly, we model the problem and the problem solving situations along with specific heuristics for those problems. Secondly, we refine the case base and discard cases which prove to be non-useful in solving new problems. Experimental results are presented and analyzed. It is shown that case based reasoning can act effectively as an intelligent approach to learn which heuristics work well for particular timetabling situations. We conclude by outlining and discussing potential research issues in this critical area of knowledge discovery for different difficult timetabling problems.
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Report for the scientific sojourn carried out at the Model-based Systems and Qualitative Reasoning Group (Technical University of Munich), from September until December 2005. Constructed wetlands (CWs), or modified natural wetlands, are used all over the world as wastewater treatment systems for small communities because they can provide high treatment efficiency with low energy consumption and low construction, operation and maintenance costs. Their treatment process is very complex because it includes physical, chemical and biological mechanisms like microorganism oxidation, microorganism reduction, filtration, sedimentation and chemical precipitation. Besides, these processes can be influenced by different factors. In order to guarantee the performance of CWs, an operation and maintenance program must be defined for each Wastewater Treatment Plant (WWTP). The main objective of this project is to provide a computer support to the definition of the most appropriate operation and maintenance protocols to guarantee the correct performance of CWs. To reach them, the definition of models which represent the knowledge about CW has been proposed: components involved in the sanitation process, relation among these units and processes to remove pollutants. Horizontal Subsurface Flow CWs are chosen as a case study and the filtration process is selected as first modelling-process application. However, the goal is to represent the process knowledge in such a way that it can be reused for other types of WWTP.
Resumo:
In some applications with case-based system, the attributes available for indexing are better described as linguistic variables instead of receiving numerical treatment. In these applications, the concept of fuzzy hypercube can be applied to give a geometrical interpretation of similarities among cases. This paper presents an approach that uses geometrical properties of fuzzy hypercube space to make indexing and retrieval processes of cases.
Resumo:
Background: It is yet unclear if there are differences between using electronic key feature problems (KFPs) or electronic case-based multiple choice questions (cbMCQ) for the assessment of clinical decision making. Summary of Work: Fifth year medical students were exposed to clerkships which ended with a summative exam. Assessment of knowledge per exam was done by 6-9 KFPs, 9-20 cbMCQ and 9-28 MC questions. Each KFP consisted of a case vignette and three key features (KF) using “long menu” as question format. We sought students’ perceptions of the KFPs and cbMCQs in focus groups (n of students=39). Furthermore statistical data of 11 exams (n of students=377) concerning the KFPs and (cb)MCQs were compared. Summary of Results: The analysis of the focus groups resulted in four themes reflecting students’ perceptions of KFPs and their comparison with (cb)MCQ: KFPs were perceived as (i) more realistic, (ii) more difficult, (iii) more motivating for the intense study of clinical reasoning than (cb)MCQ and (iv) showed an overall good acceptance when some preconditions are taken into account. The statistical analysis revealed that there was no difference in difficulty; however KFP showed a higher discrimination and reliability (G-coefficient) even when corrected for testing times. Correlation of the different exam parts was intermediate. Conclusions: Students perceived the KFPs as more motivating for the study of clinical reasoning. Statistically KFPs showed a higher discrimination and higher reliability than cbMCQs. Take-home messages: Including KFPs with long menu questions into summative clerkship exams seems to offer positive educational effects.
Resumo:
It is well known that the dimensions of the pelvic bones depend on the gender and vary with the age of the individual. Indeed, and as a matter of fact, this work will focus on the development of an intelligent decision support system to predict individual’s age based on pelvis’ dimensions criteria. On the one hand, some basic image processing technics were applied in order to extract the relevant features from pelvic X-rays. On the other hand, the computational framework presented here was built on top of a Logic Programming approach to knowledge representation and reasoning, that caters for the handling of incomplete, unknown, or even self-contradictory information, complemented with a Case Base approach to computing.
Resumo:
The productivity associated with commonly available disassembly methods today seldomly makes disassembly the preferred end-of-life solution for massive take back product streams. Systematic reuse of parts or components, or recycling of pure material fractions are often not achievable in an economically sustainable way. In this paper a case-based review of current disassembly practices is used to analyse the factors influencing disassembly feasibility. Data mining techniques were used to identify major factors influencing the profitability of disassembly operations. Case characteristics such as involvement of the product manufacturer in the end-of-life treatment and continuous ownership are some of the important dimensions. Economic models demonstrate that the efficiency of disassembly operations should be increased an order of magnitude to assure the competitiveness of ecologically preferred, disassembly oriented end-of-life scenarios for large waste of electric and electronic equipment (WEEE) streams. Technological means available to increase the productivity of the disassembly operations are summarized. Automated disassembly techniques can contribute to the robustness of the process, but do not allow to overcome the efficiency gap if not combined with appropriate product design measures. Innovative, reversible joints, collectively activated by external trigger signals, form a promising approach to low cost, mass disassembly in this context. A short overview of the state-of-the-art in the development of such self-disassembling joints is included. (c) 2008 CIRP.
Resumo:
A novel approach to scheduling resolution by combining Autonomic Computing (AC), Multi-Agent Systems (MAS), Case-based Reasoning (CBR), and Bio-Inspired Optimization Techniques (BIT) will be described. AC has emerged as a paradigm aiming at incorporating applications with a management structure similar to the central nervous system. The main intentions are to improve resource utilization and service quality. In this paper we envisage the use of MAS paradigm for supporting dynamic and distributed scheduling in Manufacturing Systems with AC properties, in order to reduce the complexity of managing manufacturing systems and human interference. The proposed CBR based Intelligent Scheduling System was evaluated under different dynamic manufacturing scenarios.
Resumo:
The scheduling problem is considered in complexity theory as a NP-hard combinatorial optimization problem. Meta-heuristics proved to be very useful in the resolution of this class of problems. However, these techniques require parameter tuning which is a very hard task to perform. A Case-based Reasoning module is proposed in order to solve the parameter tuning problem in a Multi-Agent Scheduling System. A computational study is performed in order to evaluate the proposed CBR module performance.
Resumo:
BACKGROUND: Both primary and secondary gynaecological neuroendocrine (NE) tumours are uncommon, and the literature is scarce concerning their imaging features. METHODS: This article reviews the epidemiological, clinical and imaging features with pathological correlation of gynaecological NE tumours. RESULTS: The clinical features of gynaecological NE tumours are non-specific and depend on the organ of origin and on the extension and aggressiveness of the disease. The imaging approach to these tumours is similar to that for other histological types and the Revised International Federation of Gynecology and Obstetrics (FIGO) Staging System also applies to NE tumours. Neuroendocrine tumours were recently divided into two groups: poorly differentiated neuroendocrine carcinomas (NECs) and well-differentiated neuroendocrine tumours (NETs). NECs include small cell carcinoma and large cell neuroendocrine carcinoma, while NETs account for typical and atypical carcinoids. Cervical small cell carcinoma and ovarian carcinoid are the most common gynaecological NE tumours. The former typically behaves aggressively; the latter usually behaves in a benign fashion and tends to be confined to the organ. CONCLUSION: While dealing with ovarian carcinoids, extra-ovarian extension, bilaterality and multinodularity raise the suspicion of metastatic disease. NE tumours of the endometrium and other gynaecological locations are very rare. TEACHING POINTS: • Primary or secondary neurondocrine (NE) tumours of the female genital tract are rare. • Cervical small cell carcinoma and ovarian carcinoids are the most common gynaecological NE tumours. • Cervical small cell carcinomas usually behave aggressively. • Ovarian carcinoids tend to behave in a benign fashion. • The imaging approach to gynaecological NE tumours and other histological types is similar.
Resumo:
Rising population, rapid urbanisation and growing industrialisation have severely stressed water quality and its availability in Malawi. In addition, financial and institutional problems and the expanding agro industry have aggravated this problem. The situation is worsened by depleting water resources and pollution from untreated sewage and industrial effluent. The increasing scarcity of clean water calls for the need for appropriate management of available water resources. There is also demand for a training system for conceptual design and evaluation for wastewater treatment in order to build the capacity for technical service providers and environmental practitioners in the country. It is predicted that Malawi will face a water stress situation by 2025. In the city of Blantyre, this situation is aggravated by the serious pollution threat from the grossly inadequate sewage treatment capacity. This capacity is only 23.5% of the wastewater being generated presently. In addition, limited or non-existent industrial effluent treatment has contributed to the severe water quality degradation. This situation poses a threat to the ecologically fragile and sensitive receiving water courses within the city. This water is used for domestic purposes further downstream. This manuscript outlines the legal and policy framework for wastewater treatment in Malawi. The manuscript also evaluates the existing wastewater treatment systems in Blantyre. This evaluation aims at determining if the effluent levels at the municipal plants conform to existing standards and guidelines and other associated policy and regulatory frameworks. The raw material at all the three municipal plants is sewage. The typical wastewater parameters are Biochemical Oxygen Demand (BOD5), Chemical Oxygen Demand (COD), and Total Suspended Solids (TSS). The treatment target is BOD5, COD, and TSS reduction. Typical wastewater parameters at the wastewater treatment plant at MDW&S textile and garments factory are BOD5 and COD. The treatment target is to reduce BOD5 and COD. The manuscript further evaluates a design approach of the three municipal wastewater treatment plants in the city and the wastewater treatment plant at Mapeto David Whitehead & Sons (MDW&S) textile and garments factory. This evaluation utilises case-based design and case-based reasoning principles in the ED-WAVE tool to determine if there is potential for the tool in Blantyre. The manuscript finally evaluates the technology selection process for appropriate wastewater treatment systems for the city of Blantyre. The criteria for selection of appropriate wastewater treatment systems are discussed. Decision support tools and the decision tree making process for technology selection are also discussed. Based on the treatment targets and design criteria at the eight cases evaluated in this manuscript in reference to similar cases in the ED-WAVE tool, this work confirms the practical use of case-based design and case-based reasoning principles in the ED-WAVE tool in the design and evaluation of wastewater treatment 6 systems in sub-Sahara Africa, using Blantyre, Malawi, as the case study area. After encountering a new situation, already collected decision scenarios (cases) are invoked and modified in order to arrive at a particular design alternative. What is necessary, however, is to appropriately modify the case arrived at through the Case Study Manager in order to come up with a design appropriate to the local situation taking into account technical, socio-economic and environmental aspects. This work provides a training system for conceptual design and evaluation for wastewater treatment.