973 resultados para Cartilage, Articular


Relevância:

30.00% 30.00%

Publicador:

Resumo:

SOX9 is a transcription factor that plays a key role in chondrogenesis, Aggrecan is one of the major structural components in cartilage; however, the molecular mechanism of aggrecan gene regulation has not yet been fully elucidated, TC6 is a clonal chondrocytic cell line derived from articular cartilage, The purpose of this study was to examine whether SOX9 modulates aggrecan gene expression and to further identify molecules that regulate Sox9 expression in TC6 cells. SOX9 overexpression in TC6 cells enhanced by similar to 3-fold the transcriptional activity of the AgCAT-8 construct containing S-kilobase (kb) promoter/first exon/first intron fragments of the aggrecan gene. SOX9 enhancement of aggrecan promoter activity was lost when we deleted a 4.5-kb fragment from the 3'-end of the 8-kb fragment corresponding to the region including the first intron, In TC6 cells, SOX9 enhanced the transcriptional activity of a reporter construct containing the Sry/Sox consensus sequence >10-fold. SOX9 enhancement of aggrecan gene promoter activity and SOX9 transactivation through the Sry/Sox consensus sequence were not observed in osteoblastic osteosarcoma cells (ROS17/2.8), indicating the dependence on the cellular background. Northern blot analysis indicated that TC6 cells constitutively express Sox9 mRNA at relatively low levels. To examine regulation of Sox9 gene expression, we investigated the effects of calciotropic hormones and cytokines, Among these, retinoic acid (RA) specifically enhanced Sox9 mRNA expression in TC6 cells. The basal levels of Sox9 expression and its enhancement by RA were observed similarly at both permissive (33 degrees C) and nonpermissive (39 degrees C) temperatures. Furthermore, RA treatment enhanced the transcriptional activity of a reporter construct containing the Sry/Sox consensus sequence in TC6 cells. Moreover, RA treatment also enhanced the transcriptional activity of another reporter construct containing the enhancer region of the type II procollagen gene in TC6 cells. These observations indicate that SOX9 enhances aggrecan promoter activity and that its expression is up-regulated by RA in TC6 cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wharton's jelly stem cells (WJSCs) are a potential source of transplantable stem cells in cartilage-regenerative strategies, due to their highly proliferative and multilineage differentiation capacity. We hypothesized that a non-direct co-culture system with human articular chondrocytes (hACs) could enhance the potential chondrogenic phenotype of hWJSCs during the expansion phase compared to those expanded in monoculture conditions. Primary hWJSCs were cultured in the bottom of a multiwell plate separated by a porous transwell membrane insert seeded with hACs. No statistically significant differences in hWJSCs duplication number were observed under either of the culture conditions during the expansion phase. hWJSCs under co-culture conditions show upregulations of collagen type I and II, COMP, TGFβ1 and aggrecan, as well as of the main cartilage transcription factor, SOX9, when compared to those cultured in the absence of chondrocytes. Chondrogenic differentiation of hWJSCs, previously expanded in co-culture and monoculture conditions, was evaluated for each cellular passage using the micromass culture model. Cells expanded in co-culture showed higher accumulation of glycosaminoglycans (GAGs) compared to cells in monoculture, and immunohistochemistry for localization of collagen type I revealed a strong detection signal when hWJSCs were expanded under monoculture conditions. In contrast, type II collagen was detected when cells were expanded under co-culture conditions, where numerous round-shaped cell clusters were observed. Using a micromass differentiation model, hWJSCs, previously exposed to soluble factors secreted by hACs, were able to express higher levels of chondrogenic genes with deposition of cartilage extracellular matrix components, suggesting their use as an alternative cell source for treating degenerated cartilage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymeric scaffolds used in regenerative therapies are implanted in the damaged tissue and subjected to repeated loading cycles. In the case of articular cartilage engineering, an implanted scaffold is typically subjected to long term dynamic compression. The evolution of the mechanical properties of the scaffold during bioresorption has been deeply studied in the past, but the possibility of failure due to mechanical fatigue has not been properly addressed. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading-unloading cycles. In this work fatigue studies of polycaprolactone scaffolds were carried by subjecting the scaffold to repeated compression cycles in conditions simulating the scaffold implanted in the articular cartilage. The behaviour of the polycaprolactone sponge with the pores filled with a poly(vinyl alcohol) gel simulating the new formed tissue within the pores was compared with that of the material immersed in water. Results were analyzed with Morrow’s criteria for failure and accurate fittings are obtained just up to 200 loading cycles. It is also shown that the presence of poly(vinyl alcohol) increases the elastic modulus of the scaffolds, the effect being more pronounced with increasing the number of freeze/thawing cycles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cartilage tissue is a complex nonlinear, viscoelastic, anisotropic, and multiphasic material with a very low coefficient of friction, which allows to withstand millions of cycles of joint loading over decades of wear. Upon damage, cartilage tissue has a low self-reparative capacity due to the lack of neural connections, vascularization, and a latent pool of stem/chondroprogenitor cells. Therefore, the healing of articular cartilage defects remains a significant clinical challenge, affecting millions of people worldwide. A plethora of biomaterials have been proposed to fabricate devices for cartilage regeneration, assuming a wide range of forms and structures, such as sponges, hydrogels, capsules, fibers, and microparticles. In common, the fabricated devices were designed taking in consideration that to fully achieve the regeneration of functional cartilage it is mandatory a well-orchestrated interplay of biomechanical properties, unique hierarchical structures, extracellular matrix (ECM), and bioactive factors. In fact, the main challenge in cartilage tissue engineering is to design an engineered device able to mimic the highly organized zonal architecture of articular cartilage, specifically its spatiomechanical properties and ECM composition, while inducing chondrogenesis, either by the proliferation of chondrocytes or by stimulating the chondrogenic differentiation  of stem/chondro-progenitor cells. In this chapter we present the recent advances in the development of innovative and complex biomaterials that fulfill the required structural key elements for cartilage regeneration. In particular, multiphasic, multiscale, multilayered, and hierarchical strategies composed by single or multiple biomaterials combined in a welldefined structure will be addressed. Those strategies include biomimetic scaffolds mimicking the structure of articular cartilage or engineered scaffolds as models of research to fully understand the biological mechanisms that influence the regeneration of cartilage tissue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências (Especialidade de Física)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To assess the impact of axial traction during acquisition of direct magnetic resonance (MR) arthrography of the wrist with regard to joint space width and amount of contrast material between the opposing cartilage surfaces. MATERIALS AND METHODS: Fifteen consecutive patients (12 male, mean age 38.1 years) were included in this Institutional Review Board-approved prospective study. Three-compartment wrist MR arthrographies were performed between October and December 2009 on a 3 T unit using a fat-suppressed T1-weighted isotropic high-resolution volumetric interpolated breathhold examination (VIBE) sequence in the coronal plane, with and without axial traction (3 kg). Two radiologists measured radiocarpal (radioscaphoid, radiolunate) and midcarpal (lunocapitate, hamatolunate) joint space widths, with and without traction, and assessed the amount of contrast material between the opposing cartilage surfaces using a three-point scale: 0 = absence, 1 = partial, 2 = complete. RESULTS: With traction, joint space width increased significantly at the radioscaphoid (Delta = 0.78 mm, P < 0.01), radiolunate (Delta = 0.18 mm, P < 0.01), and lunocapitate (Delta = 0.45 mm, P < 0.01) spaces, and both observers detected significantly more contrast material between the cartilage surfaces. At the hamatolunate space, the differences in joint space width (Delta = 0.14 mm, P = 0.54) and amount of contrast material were not significant. CONCLUSION: Direct wrist MR arthrography with axial traction of 3 kg increases joint space width at the radiocarpal and lunocapitate spaces, and prompts better coverage of the articular cartilage by the contrast material. J. Magn. Reson. Imaging 2011;. (c) 2011 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intra-articular osteoid osteoma (10-13% of the cases) is often difficult to identify. They present frequent atypical clinical signs and radiological images that eventually lead to inadequate treatment. For example, it has been observed that this pathology leads to inappropriate arthroscopies (up to 40%). Meniscal tear and then osteochondritis were initially suspected on a patient with an intra-articular osteoid osteoma at the tibia level. For the treatment, any damage of the cartilage has to be avoided. Thermoablation with radiofrequency is the treatment of choice

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: The presence of intra-articular basic calcium phosphate (BCP) crystals, including OCP, carbonated-apatite, hydroxyapatite and tricalcium phosphate crystals, is associated with severe osteoarthritis and destructive arthropathies such as Milwaukee shoulder. Although BCP crystals displayed, in vitro, mitogenic, anabolic and catabolic responses, their intra-articular effect was never assessed.Objective: To determine the effects of OCP crystals in joints in vivo.Methods: OCP crystals (200 ug in 20 ml PBS) were injected into the right knee joint (the contra-lateral knee joint injected with 20 ul of PBS serving as a control) of wild-type mice treated or not by the IL1R antagonist Anakinra or mice deficient for the inflammasome proteins ASC and NALP3. 4 days and 17 days after crystal injection, mice were sacrificed and knee joints dissected. Histological scoring for synovial inflammation and characterisation of macrophages, neutrophils and T cells were performed. Technetium (Tc) uptake was measured at 6h, 1 and 4 days after OCP injection. Cartilage degradation was evaluated by Safranin O staining and VDIPEN immunohistochemistry. Intra-articular localisation of injected OCP crystals was evidenced by Von Kossa staining.Results: The intra-articular localisation of injected OCP crystals was evidenced by Von Kossa staining performed on non-decalcified samples embedded in methyl-metacrylate. Injection of OCP crystals into knee joints led at day 4 to an inflammatory response with intense macrophage staining and also some neutrophil recruitment in the synovial membrane. This synovitis was not accompanied by increased Tc uptake into the knee joint, Tc uptake being similar in OCP crystal injected knee or control knee at all time points investigated (6h, 1 day, 4 days). The histological modifications persisted over 17 days, with an additional fibrosis evidenced at this later time-point. The OCP crystal-induced synovitis was totally IL-1a and IL-1 independent as shown by the absence of inhibitory effects of anakinra injected into wild-type mice. Accordingly, OCP crystal-induced synovitis was similar in ASC-/- and NALP3-/- mice as no alterations of inflammation were demonstrated between these mice groups. Concerning cartilage matrix degradation, OCP crystals induced a strong breakdown of proteoglycans 4 and 17 days after injection, as measured by loss of red staining from Safranin O-stained sections of cartilage surfaces. In addition, we also measured advanced cartilage matrix destruction mediated by MMPs, as evidenced by VDIPEN staining of cartilage. OCP-mediated cartilage degradation was similar in all experimental conditions tested (WT+Anakinra, or ASC or NALP3 deficient mice).Conclusion: These data indicate in vivo that the intra-articular presence of OCP crystals is associated with cartilage destruction along with synovial inflammation. This is an interesting and new model of destructive arthropathy related to BCP crystals which will allow to assess new therapies in this disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To determine subregions of normal and abnormal cartilage in advanced stages of femorotibial osteoarthritis (OA) by mapping the entire femorotibial joint in a cohort of pre-total knee replacement (TKR) OA knees. DESIGN: We defined an areal subdivision of the femorotibial articular cartilage surface on CT arthrography (CTA), allowing the division of the femorotibial articular surface into multiple (up to n = 204 per knee) subregions and the comparison of the same areas between different knees. Two readers independently classified each cartilage area as normal, abnormal or non-assessable in 41 consecutive pre-TKR OA knees. RESULTS: A total of 6447 cartilage areas (from 41 knees) were considered assessable by both readers. The average proportion of preserved cartilage was lower in the medial femorotibial joint than in the lateral femorotibial joint for both readers (32.0/69.8% and 33.9/68.5% (medial/lateral) for reader 1 and 2 respectively, all P < 0.001). High frequencies of normal cartilage were observed at the posterior aspect of the medial condyle (up to 89%), and the anterior aspect of the lateral femorotibial compartment (up to 100%). The posterior aspect of the medial condyle was the area that most frequently exhibited preserved cartilage in the medial femorotibial joint, contrasting with the high frequency of cartilage lesions in the rest of that compartment. CONCLUSIONS: Cartilage at the posterior aspect of the medial condyle, and at the anterior aspect of the lateral femorotibial compartment, may be frequently preserved in advanced grades of OA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Direct MR arthrography has a better diagnostic accuracy than MR imaging alone. However, contrast material is not always homogeneously distributed in the articular space. Lesions of cartilage surfaces or intra-articular soft tissues can thus be misdiagnosed. Concomitant application of axial traction during MR arthrography leads to articular distraction. This enables better distribution of contrast material in the joint and better delineation of intra-articular structures. Therefore, this technique improves detection of cartilage lesions. Moreover, the axial stress applied on articular structures may reveal lesions invisible on MR images without traction. Based on our clinical experience, we believe that this relatively unknown technique is promising and should be further developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Because of technical principles, samples to be observed with electron microscopy need to be fixed in a chemical process and exposed to vacuum conditions that can produce some changes in the morphology of the specimen. The aim of this work was to obtain high-resolution images of the fresh articular cartilage surface with an environmental scanning electron microscope (ESEM), which is an instrument that permits examination of biological specimens without fixation methods in a 10 Torr chamber pressure, thus minimizing the risk of creating artifacts in the structure. Samples from weight-bearing areas of femoral condyles of New Zealand white rabbits were collected and photographed using an ESEM. Images were analyzed using a categorization based in the Jurvelin classification system modified by Hong and Henderson. Appearance of the observed elevations and depressions as described in the classification were observed, but no fractures or splits of cartilage surface, thought to be artifacts, were detected. The ESEM is a useful tool to obtain images of fresh articular cartilage surface appearance without either employing fixation methods or exposing the specimen to extreme vacuum conditions, reducing the risk of introducing artifacts within the specimen. For all these reasons it could become a useful tool for quality control of the preservation process of osteochondral allografting in a bank of musculoskeletal tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tissue engineering encapsulated cells such as chondrocytes in the carrier matrix have been widely used to repair cartilage defects. However, chondrocyte phenotype is easily lost when chondrocytes are expanded in vitro by a process defined as “dedifferentiation”. To ensure successful therapy, an effective pro-chondrogenic agent is necessary to overcome the obstacle of limited cell numbers in the restoration process, and dedifferentiation is a prerequisite. Gallic acid (GA) has been used in the treatment of arthritis, but its biocompatibility is inferior to that of other compounds. In this study, we modified GA by incorporating sulfamonomethoxine sodium and synthesized a sulfonamido-based gallate, JJYMD-C, and evaluated its effect on chondrocyte metabolism. Our results showed that JJYMD-C could effectively increase the levels of the collagen II, Sox9, and aggrecan genes, promote chondrocyte growth, and enhance secretion and synthesis of cartilage extracellular matrix. On the other hand, expression of the collagen I gene was effectively down-regulated, demonstrating inhibition of chondrocyte dedifferentiation by JJYMD-C. Hypertrophy, as a characteristic of chondrocyte ossification, was undetectable in the JJYMD-C groups. We used JJYMD-C at doses of 0.125, 0.25, and 0.5 µg/mL, and the strongest response was observed with 0.25 µg/mL. This study provides a basis for further studies on a novel agent in the treatment of articular cartilage defects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Damage to cartilage causes a loss of type II collagen (Col-II) and glycosaminoglycans (GAG). To restore the original cartilage architecture, cell factors that stimulate Col-II and GAG production are needed. Insulin-like growth factor I (IGF-I) and transcription factor SOX9are essential for the synthesis of cartilage matrix, chondrocyte proliferation, and phenotype maintenance. We evaluated the combined effect of IGF-I and SOX9 transgene expression on Col-II and GAG production by cultured human articular chondrocytes. Transient transfection and cotransfection were performed using two mammalian expression plasmids (pCMV-SPORT6), one for each transgene. At day 9 post-transfection, the chondrocytes that were over-expressing IGF-I/SOX9 showed 2-fold increased mRNA expression of the Col-II gene, as well as a 57% increase in Col-II protein, whereas type I collagen expression (Col-I) was decreased by 59.3% compared with controls. The production of GAG by these cells increased significantly compared with the controls at day 9 (3.3- vs 1.8-times, an increase of almost 83%). Thus, IGF-I/SOX9 cotransfected chondrocytes may be useful for cell-based articular cartilage therapies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Affiliation: Département de Médecine, Faculté de médecine, Université de Montréal & Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CHUM), Hôpital Notre-Dame du CHUM