939 resultados para Cariaco Basin
Resumo:
Biweekly sediment trap samples and concurrent hydrographic measurements collected between March 2005 and October 2008 from the Cariaco Basin, Venezuela, are used to assess the relationship between [CO3]2- and the area densities (ho A) of two species of planktonic foraminifera (Globigerinoides ruber (pink) and Globigerinoides sacculifer). Calcification temperatures were calculated for each sample using species-appropriate oxygen isotope (d18O) temperature equations that were then compared to monthly temperature profiles taken at the study site in order to determine calcification depth. Ambient [CO3]2- was determined for these calcification depths using alkalinity, pH, temperature, salinity, and nutrient concentration measurements taken during monthly hydrographic cruises. The rho A, which is representative of calcification efficiency, is determined by dividing individual foraminiferal shell weights (±0.43 µg) by their associated silhouette areas and taking the sample average. The results of this study show a strong correlation between rho A and ambient [CO3]2- for both G. ruber and G. sacculifer (R**2 = 0.89 and 0.86, respectively), confirming that [CO3]2- has a pronounced effect on the calcification of these species. Though the rho A for both species reveal a highly significant (p < 0.001) relationship with ambient [CO3]2-, linear regression reveals that the extent to which [CO3]2- influences foraminiferal calcification is species specific. Hierarchical regression analyses indicate that other environmental parameters (temperature and [PO4]3-) do not confound the use of G. ruber and G. sacculifer rho A as a predictor for [CO3]2-. This study suggests that G. ruber and G. sacculifer rho A can be used as reliable proxies for past surface ocean [CO3]2?-
Resumo:
The frequency of large-scale heavy precipitation events in the European Alps is expected to undergo substantial changes with current climate change. Hence, knowledge about the past natural variability of floods caused by heavy precipitation constitutes important input for climate projections. We present a comprehensive Holocene (10,000 years) reconstruction of the flood frequency in the Central European Alps combining 15 lacustrine sediment records. These records provide an extensive catalog of flood deposits, which were generated by flood-induced underflows delivering terrestrial material to the lake floors. The multi-archive approach allows suppressing local weather patterns, such as thunderstorms, from the obtained climate signal. We reconstructed mainly late spring to fall events since ice cover and precipitation in form of snow in winter at high-altitude study sites do inhibit the generation of flood layers. We found that flood frequency was higher during cool periods, coinciding with lows in solar activity. In addition, flood occurrence shows periodicities that are also observed in reconstructions of solar activity from 14C and 10Be records (2500-3000, 900-1200, as well as of about 710, 500, 350, 208 (Suess cycle), 150, 104 and 87 (Gleissberg cycle) years). As atmospheric mechanism, we propose an expansion/shrinking of the Hadley cell with increasing/decreasing air temperature, causing dry/wet conditions in Central Europe during phases of high/low solar activity. Furthermore, differences between the flood patterns from the Northern Alps and the Southern Alps indicate changes in North Atlantic circulation. Enhanced flood occurrence in the South compared to the North suggests a pronounced southward position of the Westerlies and/or blocking over the northern North Atlantic, hence resembling a negative NAO state (most distinct from 4.2 to 2.4 kyr BP and during the Little Ice Age). South-Alpine flood activity therefore provides a qualitative record of variations in a paleo-NAO pattern during the Holocene. Additionally, increased South Alpine flood activity contrasts to low precipitation in tropical Central America (Cariaco Basin) on the Holocene and centennial time scale. This observation is consistent with a Holocene southward migration of the Atlantic circulation system, and hence of the ITCZ, driven by decreasing summer insolation in the Northern hemisphere, as well as with shorter-term fluctuations probably driven by solar activity.
Resumo:
A series of 14C measurements in Ocean Drilling Program cores from the tropical Cariaco Basin, which have been correlated to the annual-layer counted chronology for the Greenland Ice Sheet Project 2 (GISP2) ice core, provides a high-resolution calibration of the radiocarbon time scale back to 50,000 years before the present. Independent radiometric dating of events correlated to GISP2 suggests that the calibration is accurate. Reconstructed 14C activities varied substantially during the last glacial period, including sharp peaks synchronous with the Laschamp and Mono Lake geomagnetic field intensity minimal and cosmogenic nuclide peaks in ice cores and marine sediments. Simulations with a geochemical box model suggest that much of the variability can be explained by geomagnetically modulated changes in 14C production rate together with plausible changes in deep-ocean ventilation and the global carbon cycle during glaciation.
Resumo:
Modeling studies predict that changes in radiocarbon (14C) reservoir ages of surface waters during the last deglacial episode will reflect changes in both atmospheric 14C concentration and ocean circulation including the Atlantic Meridional Overturning Circulation. Tests of these models require the availability of accurate 14C reservoir ages in well-dated late Quaternary time series. We here test two models using plateau-tuned 14C time series in multiple well-placed sediment core age-depth sequences throughout the lower latitudes of the Atlantic Ocean. 14C age plateau tuning in glacial and deglacial sequences provides accurate calendar year ages that differ by as much as 500-2500 years from those based on assumed global reservoir ages around 400 years. This study demonstrates increases in local Atlantic surface reservoir ages of up to 1000 years during the Last Glacial Maximum, ages that reflect stronger trades off Benguela and summer winds off southern Brazil. By contrast, surface water reservoir ages remained close to zero in the Cariaco Basin in the southern Caribbean due to lagoon-style isolation and persistently strong atmospheric CO2 exchange. Later, during the early deglacial (16 ka) reservoir ages decreased to a minimum of 170-420 14C years throughout the South Atlantic, likely in response to the rapid rise in atmospheric pCO2 and Antarctic temperatures occurring then. Changes in magnitude and geographic distribution of 14C reservoir ages of peak glacial and deglacial surface waters deviate from the results of Franke et al. (2008) but are generally consistent with those of the more advanced ocean circulation model of Butzin et al. (2012).
Resumo:
Benthic foraminiferal Cd/Ca from a Florida Current sediment core documents the history of the northward penetration of southern source waters within the surface return flow of the Atlantic meridional overturning circulation (AMOC). Cd seawater estimates (CdW) indicate that intermediate-depth southern source waters crossed the equator and contributed to the Florida Current during the Bølling-Allerød warm period of the last deglaciation, consistent with evidence of only a modest AMOC reduction compared to today. The CdW estimates also provide the first paleoceanographic evidence of a reduction in the influence of intermediate-depth southern source waters within the Florida Current during the Younger Dryas, a deglacial cold event characterized by a weak North Atlantic AMOC. Our results reveal a close correspondence between the northward penetration of intermediate-depth southern source waters and the influence of North Atlantic Deep Water, suggesting a possible link between intermediate-depth southern source waters and the strength of the Atlantic AMOC.
Resumo:
Leg 165 of the Ocean Drilling Program afforded a unique opportunity to investigate organic and inorganic geochemistry across a wide gradient of sediment compositions and corresponding chemical pathways. The solid fractions at Sites 998, 999, 1000, and 1001 reveal varying proportions of reactive carbonate species, a labile volcanic ash fraction occurring in discrete layers and as a dispersed component, and detrital fluxes that derive from continental weathering. The relative proportions and reactivities of these end-members strongly dictate the character of the diagenetic profiles observed during the pore-water work of Leg 165. In addition, alteration of the well-characterized basaltic basement at Site 1001 has provided a strong signal that is reflected in many of the dissolved components. The relative effects of basement alteration and diagenesis within the sediment column are discussed in terms of downcore relationships for dissolved calcium and magnesium. With the exception of Site 1002 in the Cariaco Basin, the sediments encountered during Leg 165 were uniformly deficient in organic carbon (typically <0.1 wt%). Consequently, rates of organic oxidation were generally low and dominated by suboxic pathways with subordinate levels of bacterial sulfate reduction and methanogenesis. The low rates of organic remineralization are supported by modeled rates of sulfate reduction. Site 1000 provided an exception to the generally low levels of microbially mediated redox cycling. At this site the sediment is slightly more enriched in organic phases, and externally derived thermogenic hydrocarbons appear to aid in driving enhanced levels of redox diagenesis at great depths below the seafloor. The entrapment of these volatiles corresponds with a permeability seal defined by a pronounced Miocene minimum in calcium carbonate concentration recognized throughout the basin and with a dramatic downcore increase in the magnitude of limestone lithification. The latter has been tentatively linked to increases in alkalinity associated with microbial oxidation of organic matter and gaseous hydrocarbons. Recognition and quantification of previously unconstrained large volumes and frequencies of Eocene and Miocene silicic volcanic ash within the Caribbean Basin is one of the major findings of Leg 165. High frequencies of volcanic ash layers manifest as varied but often dominant controls on pore-water chemistry. Sulfur isotope results are presented that speak to secondary metal and sulfur enrichments observed in ash layers sampled during Leg 165. Ultimately, a better mechanistic understanding of these processes and the extent to which they have varied spatially and temporally may bear on the global mass balances for a range of major and minor dissolved components of seawater.
Resumo:
Membrane lipids of marine planktonic archaea have provided unique insights into archaeal ecology and paleoceanography. However, past studies of archaeal lipids in suspended particulate matter (SPM) and sediments mainly focused on a small class of fully saturated glycerol dibiphytanyl glycerol tetraether (GDGT) homologues identified decades ago. The apparent low structural diversity of GDGTs is in strong contrast to the high diversity of metabolism and taxonomy among planktonic archaea. Furthermore, adaptation of archaeal lipids in the deep ocean remains poorly constrained. We report the archaeal lipidome in SPM from diverse oceanic regimes. We extend the known inventory of planktonic archaeal lipids to include numerous unsaturated archaeal ether lipids (uns-AELs). We further reveal i) different thermal regulations and polar headgroup compositions of membrane lipids between the epipelagic (<= 100 m) and deep (> 100 m) populations of archaea; ii) stratification of unsaturated GDGTs with varying redox conditions; and iii) enrichment of tetra-unsaturated archaeol and fully saturated GDGTs in epipelagic and deep oxygenated waters, respectively. Such stratified lipid patterns are consistent with the typical distribution of archaeal phylotypes in marine environments. We thus provide an ecological context for GDGT-based paleoclimatology and bring about the potential use of uns-AELs as biomarkers for planktonic Euryarchaeota. This article is protected by copyright. All rights reserved.
Resumo:
An expanded Cariaco Basin 14C chronology is tied to 230Th-dated Hulu Cave speleothem records in order to provide detailed marine-based 14C calibration for the past 50,000 years. The revised, high-resolution Cariaco 14C calibration record agrees well with data from 230Th-dated fossil corals back to 33 ka, with continued agreement despite increased scatter back to 50 ka, suggesting that the record provides accurate calibration back to the limits of radiocarbon dating. The calibration data document highly elevated Delta14C during the Glacial period. Carbon cycle box model simulations show that the majority of observed Delta14C change can be explained by increased 14C production. However, from 45 to 15 ka, Delta14C remains anomalously high, indicating that the distribution of radiocarbon between surface and deep ocean reservoirs was different than it is today. Additional observations of the magnitude, spatial extent and timing of deep ocean Delta14C shifts are critical for a complete understanding of observed Glacial Delta14C variability.