953 resultados para Carbon Steel


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Stellite 6® powders were deposited on carbon steel using Supersonic Laser Deposition. The microstructure and performance of the coatings were examined using SEM, optical microscopy, EDS, XRD, microhardness testing and pin-on-disc wear testing. The results showed that the microstructure and wear behaviour of the most successful SLD deposition conditions with N2 at a pressure of 30bar, a temperature of 450°C and a deposition power of 1.5kW were compared with that of optimised laser cladding. © 2012 Elsevier B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aligned carbon nanotube (CNT) polymer composites are envisioned as the next-generation composite materials for a wide range of applications. In this work, we investigate the erosive wear behavior of epoxy matrix composites reinforced with both randomly dispersed and aligned carbon nanotube (CNT) arrays. The aligned CNT composites are prepared in two different configurations, where the sidewalls and ends of nanotubes are exposed to the composite surface. Results have shown that the composite with vertically aligned CNT-arrays exhibits superior erosive wear resistance compared to any of the other types of composites, and the erosion rate reaches a similar performance level to that of carbon steel at 20° impingement angle. The erosive wear mechanism of this type of composite, at various impingement angles, is studied by Scanning Electron Microscopy (SEM). We report that the erosive wear performance shows strong dependence on the alignment geometries of CNTs within the epoxy matrix under identical nanotube loading fractions. Correlations between the eroded surface roughness and the erosion rates of the CNT composites are studied by surface profilometry. This work demonstrates methods to fabricate CNT based polymer composites with high loading fractions of the filler, alignment control of nanotubes and optimized erosive wear properties. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A newly synthesized benzoic-triazole derivative 3,5-dimethylbenzoic acid [1,2,4]triazol-l-ylmethyl ester (DBT) was investigated as a corrosion inhibitor of mild steel in 1 M HCl solution using weight loss measurements, potentiodynamic polarization, SEM, and EIS methods. The results revealed that DBT was an excellent inhibitor, and the inhibition efficiencies obtained from weight loss and electrochemical experiments were in good agreement. Using the potentiodynamic polarization technique, the inhibitor was proved to have a mixed-type character for mild steel by suppressing both anodic and cathodic reactions on the metal surface. The number of water molecules (X) replaced by a molecule of organic adsorbate was determined from the Flory-Huggins, Dhar-Flory-Huggins, and Bockris-Swinkels substitutional adsorption isotherms applied to the data obtained from the gravimetric experiments performed on a mild steel specimen in 1 M HCl solution at 298 K.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Research on corrosion of steel structures in various marine environments is essential to assure the safety of structures and can effectively prolong their service life. In order to provide data for anticorrosion design of oil exploitation structures in the Bohai Bay, the corrosion behaviour and properties of steel in beach soil, using typical steel samples (Q235A carbon steel and API 5Lx52 pipeline steel) buried 0.5, 1.0 and 1.5 m deep under typical beach soils in Tanggu, Yangjiaogou, Xingcheng, Yingkou and Chengdao for 1-2 years were studied. The carbon steel and pipeline steel were both corroded severely in the beach soil, with the form of corrosion being mainly uniform with some localised attack (pitting corrosion). The corrosion rate of the carbon steel was up to 0.16 mm/year with a maximum penetration depth of 0.76 mm and that of the pipeline steel was up to 0.14 mm/year, with a maximum penetration depth of 0.53 mm. Compared with carbon steel, the pipeline steel generally had better corrosion resistance in most test beach soils. The corrosion rates and the maximum corrosion depths of carbon steel and pipeline steel were in the order: Tanggu>Xingcheng>Chengdao>Yingkou>Yangjiaogou with corrosion altering with depth of burial. The corrosion of steel in the beach soil involves a mixed mechanism with different degrees of soil aeration and microbial activity present. It is concluded that long term in situ plate laying experiments must be carried out to obtain data on steel corrosion in this beach soil environment so that the effective protection measures can be implemented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The inhibitory effect of 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) and 2,4,6-tri(2-pyridyl)-s-triazine (TPT) molecules on the corrosion of mild steel in 1 mol/L HCl and microcosmic inhibitory mechanism were investigated by X-ray photoelectron spectroscopy and ellipsometry. XPS results showed that C Is and N Is peaks of TTC, C Is and N Is peaks of TPT and their integral areas were obtained, which suggested the layer of the inhibitors (TTC or TPT) should have effectively protected the mild steel surface from the corrosion; and the depression from the inhibitors for the corrosion of mild steel surface was studied using ellipsometry combined with potentiodynamic polarization and the phasic difference was gained, which displayed the inhibitory coverage of the inhibitors formed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A series of simulation experiments on carbon steel (A(3) steel) and low alloy steel (16 Mn steel) in marine atmosphere (MA), seawater (SW) and seabed sediment (SBS) including rough sea sand, fine sea sand and seabed mud were carried out indoors for a year or so by means of individually hanging plates (IHP) and electrically connected hanging plates (ECHP). The corrosion of steels in SBS was mainly due to the macrogalvanic cell effect. The steel plates at the bottom of SBS, as the anode of a macrogalvanic cell, showed the heaviest corrosion with a corrosion rate of up to 0.12 mm/a, approximately equal to that of steel plates in marine atmosphere. The test results showed that the corrosion rates of A(3) and 16 Mn steel in marine environment were in the order: MA > SW > SBS by the IHP method; and MA > SBS > SW by the ECHP method. The corrosion rates of steels in the water/sediment interface were directly proportional to the grain size of the SBS by the ECHP method, but those of steels in the water/sediment interface did not vary with the grain size of SBS by the IHP method. The corrosion rate of low-alloy steel was a little higher than that of carbon steel. The results of this study have important applications for design of offshore steel structures such as oil platform, pier, and port.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a study of AISI 1040 steel corrosion in aqueous electrolyte of acetic acid buffer containing 3.1 and 31 x 10(-3) mol dm(-3) of Na(2)S in both the presence and absence of 3.5 wt.% NaCl. This investigation of steel corrosion was carried out using potential polarization, and open-circuit and in situ optical microscopy. The morphological analysis and classification of types of surface corrosion damage by digital image processing reveals grain boundary corrosion and shows a non-uniform sulfide film growth, which occurs preferentially over pearlitic grains through successive formation and dissolution of the film. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The microstructures and textures of coarse grained cold rolled, partially recrystallized and fully recrystallized low carbon and interstitial free steel were examined by optical microscopy, scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). The recrystallization textures of the two grades are markedly different, with the low carbon steel having a predominantly Goss {11O}<OOl> texture and the interstitial free steel having a <1ll>/1ND texture with a strong {III }<112> component. One possible explanation for the texture difference is that less severe localization of flow during deformation of interstitial free steels causes less Goss nuclei to be generated. While some support for this view is provided by the results presented in this paper, the results suggest that another mechanism may be at least partially responsible. Examination of micro
shear bands on the surface of pre-polished samples showed that a higher proportion of micro shear bands remained active at high rolling reductions in the low carbon steel, compared with the interstitial free grade. Regions of Goss orientation within bands that have ceased to operate rotate to
near-{ III }<112> orientations with further deformation. Consequently, the recrystallization texture of coarse grained interstitial free steels can be rationalized by a reduction in the availability of Goss nuclei and an increase in the availability of {Ill }<112> nuclei due to a "Goss to {Ill }<112>" rotation within micro shear bands that have ceased to operate.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the present study, wedge-shape samples were used to study the effect of strain induced transformation on the formation of ultrafine grained structures in steel by single pass rolling. The results showed two different transition strains for bainite formation and ultrafine ferrite (UFF) formation in the surface layer of strip at reductions of 40% and 70%, respectively, in a plain carbon steel. The bainitic microstructure formed by strain induced bainitic transformation during single pass rolling was also very fine. The evolution of UFF formation in the surface layer showed that ferrite coarsening is significantly reduced through strain induced transformation combined with rapid cooling in comparison with the centre of the strip. In the surface, the ferrite coarsening mostly occurred for intragranular nucleated grains (IG) rather than grain boundary (GB) ferrite grains. The results suggest that normal grain growth occurred during overall transformation in the GB ferrite grains. In the centre of the strip, there was significantly more coarsening of ferrite grains nucleated on the prior austenite grain boundaries.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Increased fuel economy, combined with the need for the improved safety has generated the development of new hot-rolled high-strength low-alloy (HSLA) and multiphase steels such as dual-phase or transformation-induced plasticity steels with improved ductility without sacrificing strength and crash resistance. However, the modern multiphase steels with good strength-ductility balance showed deteriorated stretch-flangeability due to the stress concentration region between the soft ferrite and hard martensite phases [1]. Ferritic, hot-rolled steels can provide good local elongation and, in turn, good stretch-flangeability [2]. However, conventional HSLA ferritic steels only have a tensile strength of not, vert, similar600 MPa, while steels for the automotive industry are now required to have a high tensile strength of not, vert, similar780 MPa, with excellent elongation and stretch-flangeability [1]. This level of strength and stretch-flangeability can only be achieved by precipitation hardening of the ferrite matrix with very fine precipitates and by ferrite grain refinement. It has been suggested that Mo [3] and Ti [4] should be added to form carbides and decrease the coiling temperature to 650 °C since only a low precipitation temperature can provide the precipitation refinement [4]. These particles appeared to be (Ti, Mo)C, with a cubic lattice and a parameter of 0.433 nm, and they were aligned in rows [4]. It was reported [4] that the formation of these very fine carbides led to an increase in strength of not, vert, similar300 MPa. However, the detailed analysis of these particles has not been performed to date due to their nanoscale size. The aim of this work was to carry out a detailed investigation using atom probe tomography (APT) of precipitates formed in hot-rolled low-carbon steel containing additions Ti and Mo.

The investigated low-carbon steel, containing Fe–0.1C–1.24Mn–0.03Si–0.11Cr–0.11Mo–0.09Ti–0.091Al at.%, was produced by hot rolling. The processing route has been described in detail elsewhere [5] European Patent Application, 1616970 A1, 18.01.2006.[5]. The microstructure was characterised by transmission electron microscopy (TEM) on a Philips CM 20, operated at 200 kV using thin foil and carbon replica techniques. Qualitative energy dispersive X-ray spectroscopy (EDXS) was used to analyse the chemical composition of particles. The atomic level of particle characterisation was performed at the University of Sydney using a local electrode atom probe [6]. APT was carried out using a pulse repetition rate of 200 kHz and a 20% pulse fraction on the sample with temperature of 80 K. The extent of solute-enriched regions (radius of gyration) and the local solute concentrations in these regions were estimated using the maximum separation envelope method with a grid spacing of 0.1 nm [7]. A maximum separation distance between the atoms of interest of dmax = 1 nm was used.

The microstructure of the steel consisted of two types of fine ferrite grains: (i) small recrystallised grains with an average grain size of 1.4 ± 0.2 μm; and (ii) grains with a high dislocation density (5.8 ± 1.4 × 1014 m−2) and an average grain size of 1.9 ± 0.1 μm in thickness and 2.7 ± 0.1 μm in length (Fig. 1a). Some grains with high dislocation density displayed an elongated shape with Widmanstätten side plates and also the formation of cells and subgrains (Fig. 1a). The volume fraction of recrystallised grains was 34 ± 8%.


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Isothermal transformation (TTT) behavior of the low carbon steels with two Si contents (0.50 wt pct and 1.35 wt pct) was investigated with and without the prior deformation. The results show that Si and the prior deformation of the austenite have significant effiects on the transformation of the ferrite and bainite. The addition of Si refines the ferrite grains, accelerates the polygonal ferrite transformation and the formation of M/A constituents, leading to the improvement of the strength. The ferrite grains formed under the prior deformation of the austenite become more homogeneous and refined. However, the influence of deformation on the tensile strength of both steels is dependent on the isothermal temperatures. Thermodynamic calculation indicates that Si and prior deformation reduce the incubation time of both ferrite and bainite transformation, but the effiect is weakened by the decrease of the isothermal temperatures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The dynamic strain-induced transformation (DSIT) of austenite to ferrite was investigated under different undercooling conditions using three low carbon Si-Mn steels. The undercooling of austenite (ΔT) was controlled by varying the cooling rate between austenitization and deformation temperatures. Uniform DSIT ferrite grains (∼2.3 μm) were produced at a relatively high deformation temperature above 840°C using a low carbon high Si steel (0.077C-0.97Mn-1.35Si, mass%) in connection with a larger ΔT. The critical conditions for DSIT were determined based on the flow stress-strain curves measured during hot compression tests. Influence of deformation temperature on DSIT of low carbon Si-added steel was also discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Continuous cooling transformation behaviors of low carbon steels with two Si contents (0.50% and 1. 35%) were investigated under undeformed and deformed conditions. Effects of Si contents, deformation, and cooling rates on y transformation start temperature (A,r3), phase microstructures, and hardness were studied. The results show that, in the case of the deformation with the true strain of 0. 4, the length of bainitic ferrite laths is significantly decreased in low Si steel, whereas, the M/A constituent becomes more uniform in high Si steel. An increase in cooling rates lowers the A,r3 greatly. The steel with higher level of Si exhibits higher A,r3, and higher hardness both under undeformed and deformed conditions compared with the steel with a lower Si content. Especially, the influence of Si on Ar3 is dependent on deformation. Such effects are more significant under the undeformed condition. The hardness of both steels increases with the increase of cooling rates, whereas, the deformation involved in both steels reduces the hardness.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The common grades of steel used in roll forming are: hot rolled carbon steel, high strength low alloy and recovery annealed cold rolled sheet. These steels are prone to ageing and are often skin passed and/or roller leveled to eliminate ageing as it can lead to problems in forming. In roll forming, shape defects such as bow, twist and camber are considered to be related to very small plastic strains in the longitudinal direction and hence knowledge of the material properties in the elastic plastic transition range is necessary if the process is to be modelled accurately. Previous studies with aluminium have indicated that skin pass rolling can lead to residual stresses in the strip. In this work, the study was extended to aged carbon steel and to the effect of roller leveling on both aged material and strip that had been given a light cold rolling to simulate a skin pass treatment. The results suggest that roller leveling reduced the magnitude of residual stresses resulting from skin pass rolling.

The significant differences observed between tensile and bending test results, at and near, the elastic plastic transition reinforces the need to consider bending properties when assessing the effect of prior processing on strip for roll forming.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The corrosion of steel grinding balls is a major recurrent cost for mill operators concerned with the production gold. Subsequently, the use of corrosion inhibitors in production fluids, which is typically at pH >9, is an attractive and economical option. This study reports on the corrosion wear of steel grinding balls under alkaline/oxygen conditions and in presence of cyanide. A fundamental study on the influence of several inorganic-based inhibitors (i.e., nitrite, chromate, silicate, hexametaphosphate) on the corrosion rate of carbon steel was undertaken. Subsequently, the corrosion performances of various inhibitors were evaluated in stirred vessels. Corrosion rates were determined via mass loss and electrochemical methods (i.e., linear polarisation, Tafel). It was observed that inhibitors based upon chromate provide superior protection under the conditions investigated in this study. In lime treated, high chloride waters, chromate gave over 80% protection at levels of 10 100 ppm with no evidence of pitting.