997 resultados para Carbo-amino-phospho-chelate calcium
Resumo:
The role of channel inactivation in the molecular mechanism of calcium (Ca2+) channel block by phenylalkylamines (PAA) was analyzed by designing mutant Ca2+ channels that carry the high affinity determinants of the PAA receptor site [Hockerman, G. H., Johnson, B. D., Scheuer, T., and Catterall, W. A. (1995) J. Biol. Chem. 270, 22119–22122] but inactivate at different rates. Use-dependent block by PAAs was studied after expressing the mutant Ca2+ channels in Xenopus oocytes. Substitution of single putative pore-orientated amino acids in segment IIIS6 by alanine (F-1499-A, F-1500-A, F-1510-A, I-1514-A, and F-1515-A) gradually slowed channel inactivation and simultaneously reduced inhibition of barium currents (IBa) by (−)D600 upon depolarization by 100 ms steps at 0.1 Hz. This apparent reduction in drug sensitivity was only evident if test pulses were applied at a low frequency of 0.1 Hz and almost disappeared at the frequency of 1 Hz. (−)D600 slowed IBa recovery after maintained membrane depolarization (1–3 sec) to a comparable extent in all channel constructs. A drug-induced delay in the onset of IBa recovery from inactivation suggests that PAAs promote the transition to a deep inactivated channel conformation. These findings indicate that apparent PAA sensitivity of Ca2+ channels is not only defined by drug interaction with its receptor site but also crucially dependent on intrinsic gating properties of the channel molecule. A molecular model for PAA-Ca2+ channel interaction that accounts for the relationship between drug induced inactivation and channel block by PAA is proposed.
Resumo:
N-type Ca2+ channels can be inhibited by neurotransmitter-induced release of G protein βγ subunits. Two isoforms of Cav2.2 α1 subunits of N-type calcium channels from rat brain (Cav2.2a and Cav2.2b; initially termed rbB-I and rbB-II) have different functional properties. Unmodulated Cav2.2b channels are in an easily activated “willing” (W) state with fast activation kinetics and no prepulse facilitation. Activating G proteins shifts Cav2.2b channels to a difficult to activate “reluctant” (R) state with slow activation kinetics; they can be returned to the W state by strong depolarization resulting in prepulse facilitation. This contrasts with Cav2.2a channels, which are tonically in the R state and exhibit strong prepulse facilitation. Activating or inhibiting G proteins has no effect. Thus, the R state of Cav2.2a and its reversal by prepulse facilitation are intrinsic to the channel and independent of G protein modulation. Mutating G177 in segment IS3 of Cav2.2b to E as in Cav2.2a converts Cav2.2b tonically to the R state, insensitive to further G protein modulation. The converse substitution in Cav2.2a, E177G, converts it to the W state and restores G protein modulation. We propose that negatively charged E177 in IS3 interacts with a positive charge in the IS4 voltage sensor when the channel is closed and produces the R state of Cav2.2a by a voltage sensor-trapping mechanism. G protein βγ subunits may produce reluctant channels by a similar molecular mechanism.
Resumo:
Atrial natriuretic peptide (ANP) is a 28-aa peptide hormone secreted predominantly from atrial cardiocytes. ANP is first synthesized in the form of a 126-aa precursor (proANP) which is targeted to dense core granules of the regulated secretory pathway. ProANP is stored until the cell receives a signal that triggers the processing and release of the mature peptide (regulated secretion). Various models have been proposed to explain the targeting of selected proteins to the regulated secretory pathway, including specific "sorting receptors" and calcium-mediated aggregation. As potential calcium binding regions had previously been reported in the profragment of ANP, the current study was undertaken in an effort to determine the relationship between the ability of ANP to enter the regulated secretory pathway and its calcium-mediated aggregation. Deletion and site-directed mutagenesis of selected regions of the prosegment demonstrates that acidic amino acids at positions 23 and 24 are critical for both regulated secretion of proANP from transfected AtT-20 cells and calcium-mediated aggregation of purified recombinant proANP in vitro. These results demonstrate that the ability of certain proteins to enter secretory granules is directly linked to their calcium-mediated aggregation.
Resumo:
We describe a protease, named "thiocalsin," that is activated by calcium but only after reductive activation by thioredoxin, a small protein with a redox-active disulfide group that functions widely in regulation. Thiocalsin appeared to be a 14-kDa serine protease that functions independently of calmodulin. The enzyme, purified from germinating wheat grain, specifically cleaved the major indigenous storage proteins, gliadins and glutenins, after they too had been reduced, preferentially by thioredoxin. The disulfide groups of the enzyme, as well as its protein substrates, were reduced by thioredoxin via NADPH and the associated enzyme, NADP-thioredoxin reductase. The results broaden the roles of thioredoxin and calcium and suggest a joint function in activating thiocalsin, thereby providing amino acids for germination and seedling development.
Resumo:
Ca(2+)-sensitive kinases are thought to play a role in long-term potentiation (LTP). To test the involvement of Ca2+/calmodulin-dependent kinase II (CaM-K II), truncated, constitutively active form of this kinase was directly injected into CA1 hippocampal pyramidal cells. Inclusion of CaM-K II in the recording pipette resulted in a gradual increase in the size of excitatory postsynaptic currents (EPSCs). No change in evoked responses occurred when the pipette contained heat-inactivated kinase. The effects of CaM-K II mimicked several features of LTP in that it caused a decreased incidence of synaptic failures, an increase in the size of spontaneous EPSCs, and an increase in the amplitude of responses to iontophoretically applied alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate. To determine whether the CaM-K II-induced enhancement and LTP share a common mechanism, occlusion experiments were carried out. The enhancing action of CaM-K II was greatly diminished by prior induction of LTP. In addition, following the increase in synaptic strength by CaM-K II, tetanic stimulation failed to evoke LTP. These findings indicate that CaM-K II alone is sufficient to augment synaptic strength and that this enhancement shares the same underlying mechanism as the enhancement observed with LTP.
Resumo:
Recoverin is a member of the EF-hand family of calcium-binding proteins involved in the transduction of light by vertebrate photoreceptors. Recoverin also was identified as an autoantigen in the degenerative disease of the retina known as cancer-associated retinopathy (CAR), a paraneoplastic syndrome whereby immunological events lead to the degeneration of photoreceptors in some individuals with cancer. In this study, we demonstrate that recoverin is expressed in the lung tumor of a CAR patient but not in similar tumors obtained from individuals without the associated retinopathy. Recoverin was identified intially by Western blot analysis of the CAR patient's biopsy tissue by using anti-recoverin antibodies generated against different regions of the recoverin molecule. In addition, cultured cells from the biopsy tissue expressed recoverin, as demonstrated by reverse transcription-PCR using RNA extracted from the cells. The immunodominant region of recoverin also was determined in this study by a solid-phase immunoassay employing overlapping heptapeptides encompassing the entire recoverin sequence. Two linear stretches of amino acids (residues 64-70, Lys-Ala-Tyr-Ala-Gln-His-Val; and 48-52, Gln-Phe-Gln-Ser-Ile) made up the major determinants. One of the same regions of the recoverin molecule (residues 64-70) also was uniquely immunopathogenic, causing photoreceptor degeneration upon immunization of Lewis rats with the corresponding peptide. These data demonstrate that the neural antigen recoverin more than likely is responsible for the immunological events associated with vision loss in some patients with cancer. These data also establish CAR as one of the few autoimmune-mediated diseases for which the specific self-antigen is known.
Resumo:
The specific Ca2+ binding site that triggers contraction of molluscan muscle requires the presence of an essential light chain (ELC) from a Ca2+ binding myosin. Of the four EF hand-like domains in molluscan ELCs, only domain III has an amino acid sequence predicted to be capable of binding Ca2+. In this report, we have used mutant ELCs to locate the Ca2+ binding site in scallop myosin and to probe the role of the ELC in regulation. Point mutations in domain III of scallop ELC have no effect on Ca2+ binding. Interestingly, scallop and rat cardiac ELC chimeras support Ca2+ binding only if domain I is scallop. These results are nevertheless in agreement with structural studies on a proteolytic fragment of scallop myosin, the regulatory domain. Furthermore, Ca2+ sensitivity of the scallop myosin ATPase requires scallop ELC domain I: ELCs containing cardiac domain I convert scallop myosin to an unregulated molecule whose activity is no longer repressed in the absence of Ca2+. Despite its unusual EF hand domain sequence, our data indicate that the unique and required contribution of molluscan ELCs to Ca2+ binding and regulation of molluscan myosins resides exclusively in domain I.
Resumo:
We identified an autoantibody that reacts with calpastatin [an inhibitor protein of the calcium-dependent neutral protease calpain (EC 3.4.22.17)]. In early immunoblot studies, sera from patients with rheumatoid arthritis (RA) recognized unidentified 60-, 45-, and 75-kDa proteins in HeLa cell extracts. To identify these autoantigens, we used patient sera to clone cDNAs from a lambda gt11 expression library. We isolated clones of four genes that expressed fusion proteins recognized by RA sera. The 1.2-kb cDNA insert (termed RA-6) appeared to encode a polypeptide corresponding to the 60-kDa antigen from HeLa cells, since antibodies bound to the RA-6 fusion protein also reacted with a 60-kDa HeLa protein. The deduced amino acid sequence of the RA-6 cDNA was completely identical with the C-terminal 178 amino acids of human calpastatin except for one amino acid substitution. Patient sera that reacted with the RA-6 also bound pig muscle calpastatin, and a monoclonal antibody to human calpastatin recognized the RA-6 fusion protein, confirming the identity of RA-6 with calpastatin. Moreover, the purified RA-6 fusion protein inhibited the proteolytic activity of calpain, and IgG from a serum containing anti-calpastatin antibodies blocked the calpastatin activity of the RA-6 fusion protein. Immunoblots of the RA-6 product detected autoantibodies to calpastatin in 57% of RA patients; this incidence was significantly higher than that observed in other systemic rheumatic diseases, including systemic lupus erythematosus (27%), polymyositis/dermatomyositis (24%), systemic sclerosis (38%), and overlap syndrome (29%). Thus, anti-calpastatin antibodies are present most frequently in patients with RA and may participate in pathogenic mechanisms of rheumatic diseases.
Resumo:
Calcium, a universal second messenger, regulates diverse cellular processes in eukaryotes. Ca2+ and Ca2+/calmodulin-regulated protein phosphorylation play a pivotal role in amplifying and diversifying the action of Ca(2+)-binding domain was cloned and characterized from lily. The cDNA clone contains an open reading frame coding for a protein of 520 amino acids. The predicted structure of CCaMK contains a catalytic domain followed by two regulatory domains, a calmodulin-binding domain and a visinin-like Ca(2+)-binding domain. The amino-terminal region of CCaMK contains all 11 conserved subdomains characteristic of serine/threonine protein kinases. The calmodulin-binding region of CCaMK has high homology (79%) to alpha subunit of mammalian Ca2+/calmodulin-dependent protein kinase. The calmodulin-binding region is fused to a neural visinin-like domain that contains three Ca(2+)-binding EF-hand motifs and a biotin-binding site. The Escherichia coli-expressed protein (approximately 56 kDa) binds calmodulin in a Ca(2+)-dependent manner. Furthermore, 45Ca-binding assays revealed that CCaMK directly binds Ca2+. The CCaMK gene is preferentially expressed in developing anthers. Southern blot analysis revealed that CCaMK is encoded by a single gene. The structural features of the gene suggest that it has multiple regulatory controls and could play a unique role in Ca2+ signaling in plants.
Resumo:
The objective of this work was to study the effect of root and foliar application of two commercial products containing amino acids from plant and animal origin on iron (Fe) nutrition of tomato seedlings cultivated in two nutrient media: lime and normal nutrient solutions. In the foliar-application experiment, each product was sprayed with 0.5 and 0.7 mL L–1 2, 7, 12, and 17 d after transplanting. In the root application experiment, 0.1 and 0.2 mL L–1 of amino acids products were added to the nutrient solutions. In both experiments, untreated control plants were included as well. Foliar and root application of the product containing amino acids from animal origin caused severe plant-growth depression and nonpositive effects on Fe nutrition were found. In contrast, the application of the product from plant origin stimulated plant growth. Furthermore, significantly enhanced root and leaf FeIII-chelate reductase activity, chlorophyll concentration, leaf Fe concentration, and FeII : Fe ratio were found in tomato seedlings treated with the product from plant origin, especially when the amino acids were directly applied to the roots. These effects were more evident in plants developed under lime-induced Fe deficiency. The positive results on Fe uptake may be related to the action of glutamic acid, the most abundant amino acid in the formulation of the product from plant origin.
Resumo:
The activity of calmodulin (CaM) is modulated not only by oscillations in the cytosolic concentration of free Ca2+, but also by its phosphorylation status. In the present study, the role of tyrosine-phosphorylated CaM [P-(Tyr)-CaM] on the regulation of the epidermal growth factor receptor (EGFR) has been examined using in vitro assay systems. We show that phosphorylation of CaM by rat liver solubilized EGFR leads to a dramatic increase in the subsequent phosphorylation of poly-L-(Glu:Tyr) (PGT) by the receptor in the presence of ligand, both in the absence and in the presence of Ca2+. This occurred in contrast with assays where P-(Tyr)-CaM accumulation was prevented by the presence of Ca2+, absence of a basic cofactor required for CaM phosphorylation and/or absence of CaM itself. Moreover, an antibody against CaM, which inhibits its phosphorylation, prevented the extra ligand-dependent EGFR activation. Addition of purified P-(Tyr)-CaM, phosphorylated by recombinant c-Src (cellular sarcoma kinase) and free of non-phosphorylated CaM, obtained by affinity-chromatography using an immobilized anti-phospho-(Tyr)-antibody, also increased the ligand-dependent tyrosine kinase activity of the isolated EGFR toward PGT. Also a CaM(Y99D/Y138D) mutant mimicked the effect of P-(Tyr)-CaM on ligand-dependent EGFR activation. Finally, we demonstrate that P-(Tyr)-CaM binds to the same site (645R-R-R-H-I-V-R-K-R-T-L-R-R-L-L-Q660) as non-phosphorylated CaM, located at the cytosolic juxtamembrane region of the EGFR. These results show that P-(Tyr)-CaM is an activator of the EGFR and suggest that it could contribute to the CaM-mediated ligand-dependent activation of the receptor that we previously reported in living cells.
Resumo:
Proteins and their amino acid building blocks form a major group of biomolecules in all organisms. In the sedimentary environment, proteins and amino acids have two sources: (1) soft tissues and detritus and (2) biotic skeletal structures, dominantly from calcium carbonate-secreting organisms. The focus of this report is on D/L ratios and concentrations of selected amino acids in interstitial waters collected during ODP Leg 201. The Peru margin sites are generally low in carbonates, whereas the open-ocean sites are more carbonate rich. Seifert et al. (1990, doi:10.2973/odp.proc.sr.112.152.1990) reported amino acid concentrations in interstitial waters from Site 681 (ODP Leg 112) comparable to Leg 201 Site 1229.
Auxiliary subunit regulation of high-voltage activated calcium channels expressed in mammalian cells
Resumo:
The effects of auxiliary calcium channel subunits on the expression and functional properties of high-voltage activated (HVA) calcium channels have been studied extensively in the Xenopus oocyte expression system, but are less completely characterized in a mammalian cellular environment. Here, we provide the first systematic analysis of the effects of calcium channel beta and alpha(2)-delta subunits on expression levels and biophysical properties of three different types (Ca(v)1.2, Ca(v)2.1 and Ca(v)2.3) of HVA calcium channels expressed in tsA-201 cells. Our data show that Ca(v)1.2 and Ca(v)2.3 channels yield significant barium current in the absence of any auxiliary subunits. Although calcium channel beta subunits were in principle capable of increasing whole cell conductance, this effect was dependent on the type of calcium channel alpha(1) subunit, and beta(3) subunits altogether failed to enhance current amplitude irrespective of channel subtype. Moreover, the alpha(2)-delta subunit alone is capable of increasing current amplitude of each channel type examined, and at least for members of the Ca(v)2 channel family, appears to act synergistically with beta subunits. In general agreement with previous studies, channel activation and inactivation gating was regulated both by beta and by alpha(2)-delta subunits. However, whereas pronounced regulation of inactivation characteristics was seen with the majority of the auxiliary subunits, effects on voltage dependence of activation were only small (< 5 mV). Overall, through a systematic approach, we have elucidated a previously underestimated role of the alpha(2)-delta(1) subunit with regard to current enhancement and kinetics. Moreover, the effects of each auxiliary subunit on whole cell conductance and channel gating appear to be specifically tailored to subsets of calcium channel subtypes.
Amino acid, peptide and drug transport across monolayers of human intestinal (CAC0-2) cells in vitro
Resumo:
The properties of Caco-2 monolayers were compared on aluminium oxide and nitrocellulose permeable-supports. On nitrocellulose, Caco-2 cells displayed a higher rate of taurocholic acid transport than those cultured on aluminium oxide inserts. In addition, Caco-2 cells grown on these two inserts were not comparable with respect to cell morphology, cell numbers and transepithelial electrical resistance. The low adsorption potential of the aluminium oxide inserts, particularly for high molecular weight or lipophilic ligands, offers a distinct advantage over nitrocellulose inserts for drug transport studies. The carrier-mediated uptake and transport of the imino acid (L-proline) and the acidic amino acids (L-aspartate and L-glutamate) have been studied. At pH7.4, L-proline uptake is mediated via an A-system carrier. Elevated uptake and transport under acidic conditions occurs by activation of a distinct carrier population. Acidic amino acid transport is mediated via a X-AG system. The flux of baclofen, CGP40116 andCGP40117 across Caco-2 monolayers was described by passive transport. The transport of three peptides, thyrotrophin-releasing hormone, SQ29852 and cyclosporin were investigated. Thyrotrophin-releasing hormone transport acrossCaco-2 monolayers was characterised by a minor saturable (carrier-mediated,approximately 25%) pathway, superimposed onto a major non-saturable (diffusional)pathway. SQ29852 uptake into Caco-2 monolayers is described by a major saturable mechanism (Km = 0.91 mM) superimposed onto a minor passive component.However, the initial-rate of SQ29852 transport is consistent with a passive transepithelial transport mechanism. These data highlight the possibility that itsbasolateral efflux is severely retarded such that the passive paracellular transportdictates the overall transepithelial transport characteristics. In addition, modelsuitable for investigating the transepithelial transport of cyclosporin A has been developed. A modification of the conventional Caco-2 model has been developed which has a calcium-free Ap donor-solution and a Bl receiver-solution containing the minimumcalcium concentration required to maintain monolayer integrity (100 μM). The influence of calcium and magnesium on the absorption of [14C]pamidronate was evaluated by comparing its transport across the conventional and minimum calciumCaco-2 models. Ap calcium and magnesium ions retard the Ap-to-Bl flux of pamidronate across Caco-2 monolayers. The effect of self-emulsifying oleic acid-Tween 80 formulations on Caco-2monolayer integrity has been investigated. Oleic acid-Tween 80 (1 0:1) formulations produced a dose-dependent disruption of Caco-2 monolayer integrity. This disruption was related to the oleic acid content of the formulation.
Resumo:
A Pliocene (2.6-3.5 Ma) age is determined from glacial sediments studied in a 20m long, 4 m deep trench excavated in Heidemann Valley, Vestfold Hills, East Antarctica. The age determination is based on a combined study of amino acid racemization, diatoms, foraminifera, and magnetic polarity, and supports earlier estimates of the age of the sedimentary section; all are beyond 14C range. Four till units are recognized and documented, and 16 subunits are identified. All are ascribed to deposition during a Late Pliocene glaciation that was probably the last time the entire Vestfold Hills was covered by an enlarged East Antarctic Ice Sheet (EAIS). Evidence for other more recent glacial events of the 'Vestfold Glaciation' may have been due to lateral expansion of the Sorsdal Glacier and limited expansion of the icesheet margin during the Last Glacial Maximum rather than a major expansion of the EAIS. The deposit appears to correlate with a marine deposition event recorded in Ocean Drilling Program Site 1166 in Prydz Bay, possibly with the Bardin Bluffs Formation of the Prince Charles Mountains and with part of the time represented in the ANDRILL AND-1B core in the Ross Sea.