975 resultados para Característica de Euler
Resumo:
Turbomáquinas são máquinas operacionais que transferem energia mecânica entre um rotor e um fluido. Estas máquinas têm muitas aplicações industriais. Um dos componentes de uma turbomáquina responsável pela transferência da energia, ou receber a rotação do eixo e transformar em energia de fluido em caso de bomba ou transferir a energia do fluido para o eixo em caso de uma turbina, é o impelidor ou rotor. O fenómeno da cavitação envolve escoamento bifásico: o líquido a ser bombeado e as bolhas de vapor que são formadas durante o processo de bombeamento. O processo de formação dessas bolhas é complexo, mas ocorre principalmente devido a presença de regiões de pressões muito baixas. O colapso dessas bolhas pode muitas vezes levar a deterioração do material, dependendo da intensidade ou da velocidade de colapso das bolhas. O principal objetivo deste trabalho foi estudar o comportamento hidrodinâmico do escoamento nos canais do impelidor de uma turbomáquina do tipo radial usando recursos de fluidodinâmica computacional (CFD). Uma abordagem Euler-Lagrange acoplada com o modelo da equação de Langevin foi empregada para estimar a trajetória das bolhas. Resultados das simulações mostram as particularidades de um escoamento líquido-bolha de vapor passando em um canal de geometria curva, fornecendo assim informações que podem nos ajudar na prevenção da cavitação nessas máquinas.
Resumo:
The paper is devoted to extending the new efficient frequency-domain method of adjoint Green's function calculation to curvilinear multi-block RANS domains for middle and farfield sound computations. Numerical details of the method such as grids, boundary conditions and convergence acceleration are discussed. Two acoustic source models are considered in conjunction with the method and acoustic modelling results are presented for a benchmark low-Reynolds-number jet case.
Resumo:
Existing Monte Carlo burnup codes use various schemes to solve the coupled criticality and burnup equations. Previous studies have shown that the coupling schemes of the existing Monte Carlo burnup codes can be numerically unstable. Here we develop the Stochastic Implicit Euler method - a stable and efficient new coupling scheme. The implicit solution is obtained by the stochastic approximation at each time step. Our test calculations demonstrate that the Stochastic Implicit Euler method can provide an accurate solution to problems where the methods in the existing Monte Carlo burnup codes fail. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
In the present paper we consider second order compact upwind schemes with a space split time derivative (CABARET) applied to one-dimensional compressible gas flows. As opposed to the conventional approach associated with incorporating adjacent space cells we use information from adjacent time layer to improve the solution accuracy. Taking the first order Roe scheme as the basis we develop a few higher (i.e. second within regions of smooth solutions) order accurate difference schemes. One of them (CABARET3) is formulated in a two-time-layer form, which makes it most simple and robust. Supersonic and subsonic shock-tube tests are used to compare the new schemes with several well-known second-order TVD schemes. In particular, it is shown that CABARET3 is notably more accurate than the standard second-order Roe scheme with MUSCL flux splitting.
Resumo:
The paper deals with the static analysis of pre-damaged Euler-Bernoulli beams with any number of unilateral cracks and subjected to tensile or compression forces combined with arbitrary transverse loads. The mathematical representation of cracks with a bilateral behaviour (i.e. always open) via Dirac delta functions is extended by introducing a convenient switching variable, which allows each crack to be open or closed depending on the sign of the axial strain at the crack centre. The proposed model leads to analytical solutions, which depend on four integration constants (to be computed by enforcing the boundary conditions) along with the Boolean switching variables associated with the cracks (whose role is to turn on and off the additional flexibility due to the presence of the cracks). An efficient computational procedure is also presented and numerically validated. For this purpose, the proposed approach is applied to two pre-damaged beams, with different damage and loading conditions, and the results so obtained are compared against those given by a standard finite element code (in which the correct opening of the cracks is pre-assigned), always showing a perfect agreement. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
In this study, the Euler-Euler (E-E) and Euler-Lagrange (E-L) models designed for the same chemical mechanism of heterogeneous reactions were used to predict the performance of a typical sudden-expanding coal combustor. The results showed that the current E-E model underestimated the coal burnout rate because the particle temperature fluctuation on char combustion is not adequately considered. A comparison of the E-E and E-L simulations showed the underestimation of heterogeneous chemical reaction rates by the E-E model. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
El pasado 15 de abril se cumplían 300 años del nacimiento de uno de los cuatro matemáticos más geniales de la historia, Leonhard Euler. Para mí, los otros tres, y que cada cual elija su orden, son Arquímedes, Newton y Gauss. Si la calificación la hiciésemos atendiendo a la cantidad de los trabajos de primer orden realizados por cada uno de ellos, sin duda Euler ocuparía el primer lugar. A lo largo de su extensa vida Euler produjo más de ochocientos libros y miles de artículos y trabajos. Sus obras completas Opera Omnia ocupan más de 80 volúmenes. Sin lugar a dudas es el matemático más prolífico de la Historia. Pero, con ser importante la cantidad de trabajos, el aprecio de los matemáticos contemporáneos y posteriores a él se debe más a la riqueza, originalidad, belleza y genial agudeza de su obra que a su volumen.
Resumo:
Uno de los más prolíficos matemáticos, sino el que más, que han existido a lo largo de toda la historia, ha sido el suizo Leonhard Euler (1707-1783). Además de, en nuestro caso, introducir el uso de la letra griega π (inicial de perímetro) para nuestro número, dió numerosas aproximaciones mediante desarrollos en serie de la relación existente entre la circunferencia y su diámetro. El presente articulo trata de explicar el ingenioso procedimiento de dos de dichas series: la serie de Jacques Bernouilli y, la serie de Leibniz.