894 resultados para Calculus of variations
Resumo:
Crystalline molybdate thin films were prepared by the complex polymerization method. The AMoO(4) (A = Ca, Sr, Ba) films were deposited onto Si wafers by the spinning technique. The Mo-O bond in the AMoO(4) structure was confirmed by FTIR spectra. X-ray diffraction revealed the presence of crystalline scheelite-type phase. The mass, size, and basicity of A(2+) cations was found to be dependent on the intrinsic characteristics of the materials. The grain size increased in the following order: CaMoO4 < SrMoO4 < BaMoO4. The emission band wavelength was detected at around 576 nm. Our findings suggest that the material's morphology and photoluminescence were both affected by the variations in cations (Ca, Sr, or Ba) and in the thermal treatment.
Resumo:
Some problems of Calculus of Variations do not have solutions in the class of classic continuous and smooth arcs. This suggests the need of a relaxation or extension of the problem ensuring the existence of a solution in some enlarged class of arcs. This work aims at the development of an extension for a more general optimal control problem with nonlinear control dynamics in which the control function takes values in some closed, but not necessarily bounded, set. To achieve this goal, we exploit the approach of R.V. Gamkrelidze based on the generalized controls, but related to discontinuous arcs. This leads to the notion of generalized impulsive control. The proposed extension links various approaches on the issue of extension found in the literature.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The neurovascular bundle may be vulnerable during surgical procedures involving the mandible, especially when anatomical variations are present. Increased demand of implant surgeries, wider availability of three-dimensional exams, and lack of clear definitions in the literature indicate that features of anatomical variations should be revisited. The objective of the study was to evaluate features of anatomical variations related to mandibular canal (MC), such as bifid canals, anterior loop of mental nerve, and corticalization of MC. Additionally, bone trabeculation at the submandibular gland fossa region (SGF) was assessed and related to visibility of MC. Cone beam computed tomography exams from 100 patients (200 hemimandibles) were analyzed and the following parameters were registered: diameter and corticalization of MC; trabeculation in SGF region; presence of bifid MC, position of bifurcations, diameter, and direction of bifid canals; and measurement of anterior loops by two methods. Corticalization of the MC was observed in 59% of hemimandibles. In 23%, MC could be identified despite absence of corticalization. Diameter of MC was between 2.1 and 4 mm for nearly three quarters of the sample. In 80% of the sample trabeculation at the SGF was either decreased or not visible, and such cases showed correlation with absence of MC corticalization. Bifid MC affected 19% of the patients, mostly associated with additional mental foramina. Clinically significant anterior loop (> 2 mm of anterior extension) was observed in 22-28%, depending on the method. Our findings, together with previously reported limitations of conventional exams, draw attention to the unpredictability related to anatomical variations in neurovascularization, showing the contribution of individual assessment through different views of three-dimensional imaging prior to surgical procedures in the mandible.
Resumo:
The demands of developing modern, highly dynamic applications have led to an increasing interest in dynamic programming languages and mechanisms. Not only applications must evolve over time, but the object models themselves may need to be adapted to the requirements of different run-time contexts. Class-based models and prototype-based models, for example, may need to co-exist to meet the demands of dynamically evolving applications. Multi-dimensional dispatch, fine-grained and dynamic software composition, and run-time evolution of behaviour are further examples of diverse mechanisms which may need to co-exist in a dynamically evolving run-time environment How can we model the semantics of these highly dynamic features, yet still offer some reasonable safety guarantees? To this end we present an original calculus in which objects can adapt their behaviour at run-time to changing contexts. Both objects and environments are represented by first-class mappings between variables and values. Message sends are dynamically resolved to method calls. Variables may be dynamically bound, making it possible to model a variety of dynamic mechanisms within the same calculus. Despite the highly dynamic nature of the calculus, safety properties are assured by a type assignment system.
Resumo:
The demands of developing modern, highly dynamic applications have led to an increasing interest in dynamic programming languages and mechanisms. Not only must applications evolve over time, but the object models themselves may need to be adapted to the requirements of different run-time contexts. Class-based models and prototype-based models, for example, may need to co-exist to meet the demands of dynamically evolving applications. Multi-dimensional dispatch, fine-grained and dynamic software composition, and run-time evolution of behaviour are further examples of diverse mechanisms which may need to co-exist in a dynamically evolving run-time environment. How can we model the semantics of these highly dynamic features, yet still offer some reasonable safety guarantees? To this end we present an original calculus in which objects can adapt their behaviour at run-time. Both objects and environments are represented by first-class mappings between variables and values. Message sends are dynamically resolved to method calls. Variables may be dynamically bound, making it possible to model a variety of dynamic mechanisms within the same calculus. Despite the highly dynamic nature of the calculus, safety properties are assured by a type assignment system.
Resumo:
The new Spanish Regulation in Building Acoustic establishes values and limits for the different acoustic magnitudes whose fulfillment can be verify by means field measurements. In this sense, an essential aspect of a field measurement is to give the measured magnitude and the uncertainty associated to such a magnitude. In the calculus of the uncertainty it is very usual to follow the uncertainty propagation method as described in the Guide to the expression of Uncertainty in Measurements (GUM). Other option is the numerical calculus based on the distribution propagation method by means of Monte Carlo simulation. In fact, at this stage, it is possible to find several publications developing this last method by using different software programs. In the present work, we used Excel for the Monte Carlo simulation for the calculus of the uncertainty associated to the different magnitudes derived from the field measurements following ISO 140-4, 140-5 and 140-7. We compare the results with the ones obtained by the uncertainty propagation method. Although both methods give similar values, some small differences have been observed. Some arguments to explain such differences are the asymmetry of the probability distributions associated to the entry magnitudes,the overestimation of the uncertainty following the GUM
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
For piano.
Resumo:
The differential calculus.--Coordinate or analytical geometry.--Functions with singular properties.--The integral calculus.--Infinite series and their uses.--How to solve numerical equations.--How to solve differential equations.--Fourier's theorum.--Probability and the theory of errors.--The calculus of variations.--Determinants.--Collection of formulae for references.--Reference tables.
Resumo:
Reprints and detached papers.