957 resultados para Calculus
Resumo:
The fractional calculus of variations and fractional optimal control are generalizations of the corresponding classical theories, that allow problem modeling and formulations with arbitrary order derivatives and integrals. Because of the lack of analytic methods to solve such fractional problems, numerical techniques are developed. Here, we mainly investigate the approximation of fractional operators by means of series of integer-order derivatives and generalized finite differences. We give upper bounds for the error of proposed approximations and study their efficiency. Direct and indirect methods in solving fractional variational problems are studied in detail. Furthermore, optimality conditions are discussed for different types of unconstrained and constrained variational problems and for fractional optimal control problems. The introduced numerical methods are employed to solve some illustrative examples.
Resumo:
We consider some problems of the calculus of variations on time scales. On the beginning our attention is paid on two inverse extremal problems on arbitrary time scales. Firstly, using the Euler-Lagrange equation and the strengthened Legendre condition, we derive a general form for a variation functional that attains a local minimum at a given point of the vector space. Furthermore, we prove a necessary condition for a dynamic integro-differential equation to be an Euler-Lagrange equation. New and interesting results for the discrete and quantum calculus are obtained as particular cases. Afterwards, we prove Euler-Lagrange type equations and transversality conditions for generalized infinite horizon problems. Next we investigate the composition of a certain scalar function with delta and nabla integrals of a vector valued field. Euler-Lagrange equations in integral form, transversality conditions, and necessary optimality conditions for isoperimetric problems, on an arbitrary time scale, are proved. In the end, two main issues of application of time scales in economic, with interesting results, are presented. In the former case we consider a firm that wants to program its production and investment policies to reach a given production rate and to maximize its future market competitiveness. The model which describes firm activities is studied in two different ways: using classical discretizations; and applying discrete versions of our result on time scales. In the end we compare the cost functional values obtained from those two approaches. The latter problem is more complex and relates to rate of inflation, p, and rate of unemployment, u, which inflict a social loss. Using known relations between p, u, and the expected rate of inflation π, we rewrite the social loss function as a function of π. We present this model in the time scale framework and find an optimal path π that minimizes the total social loss over a given time interval.
Resumo:
Prémio de Melhor Artigo de Jovem Investigador atribuído pela empresa Timberlake, apresentado na 1ª Conferência Nacional sobre Computação Simbólica no Ensino e na Investigação - CSEI2012, que decorreu no IST nos dias 2 e 3 de Abril.
Resumo:
Fractional calculus generalizes integer order derivatives and integrals. During the last half century a considerable progress took place in this scientific area. This paper addresses the evolution and establishes an assertive measure of the research development.
Resumo:
This survey intends to report some of the major documents and events in the area of fractional calculus that took place since 1974 up to the present date.
Resumo:
In the last decades fractional calculus (FC) became an area of intensive research and development. This paper goes back and recalls important pioneers that started to apply FC to scientific and engineering problems during the nineteenth and twentieth centuries. Those we present are, in alphabetical order: Niels Abel, Kenneth and Robert Cole, Andrew Gemant, Andrey N. Gerasimov, Oliver Heaviside, Paul Lévy, Rashid Sh. Nigmatullin, Yuri N. Rabotnov, George Scott Blair.
Resumo:
While fractional calculus (FC) is as old as integer calculus, its application has been mainly restricted to mathematics. However, many real systems are better described using FC equations than with integer models. FC is a suitable tool for describing systems characterised by their fractal nature, long-term memory and chaotic behaviour. It is a promising methodology for failure analysis and modelling, since the behaviour of a failing system depends on factors that increase the model’s complexity. This paper explores the proficiency of FC in modelling complex behaviour by tuning only a few parameters. This work proposes a novel two-step strategy for diagnosis, first modelling common failure conditions and, second, by comparing these models with real machine signals and using the difference to feed a computational classifier. Our proposal is validated using an electrical motor coupled with a mechanical gear reducer.
Resumo:
This paper applies Pseudo Phase Plane (PPP) and Fractional Calculus (FC) mathematical tools for modeling world economies. A challenging global rivalry among the largest international economies began in the early 1970s, when the post-war prosperity declined. It went on, up to now. If some worrying threatens may exist actually in terms of possible ambitious military aggression, invasion, or hegemony, countries’ PPP relative positions can tell something on the current global peaceful equilibrium. A global political downturn of the USA on global hegemony in favor of Asian partners is possible, but can still be not accomplished in the next decades. If the 1973 oil chock has represented the beginning of a long-run recession, the PPP analysis of the last four decades (1972–2012) does not conclude for other partners’ global dominance (Russian, Brazil, Japan, and Germany) in reaching high degrees of similarity with the most developed world countries. The synergies of the proposed mathematical tools lead to a better understanding of the dynamics underlying world economies and point towards the estimation of future states based on the memory of each time series.
Resumo:
Recently, operational matrices were adapted for solving several kinds of fractional differential equations (FDEs). The use of numerical techniques in conjunction with operational matrices of some orthogonal polynomials, for the solution of FDEs on finite and infinite intervals, produced highly accurate solutions for such equations. This article discusses spectral techniques based on operational matrices of fractional derivatives and integrals for solving several kinds of linear and nonlinear FDEs. More precisely, we present the operational matrices of fractional derivatives and integrals, for several polynomials on bounded domains, such as the Legendre, Chebyshev, Jacobi and Bernstein polynomials, and we use them with different spectral techniques for solving the aforementioned equations on bounded domains. The operational matrices of fractional derivatives and integrals are also presented for orthogonal Laguerre and modified generalized Laguerre polynomials, and their use with numerical techniques for solving FDEs on a semi-infinite interval is discussed. Several examples are presented to illustrate the numerical and theoretical properties of various spectral techniques for solving FDEs on finite and semi-infinite intervals.
Resumo:
Traduction de Wylie, rédigée par Li Shan lan ; préfaces Chinoises des deux traducteurs (1859) ; préface anglaise, écrite à Shang hai par A. Wylie (juillet 1859). Liste de termes techniques en anglais et en Chinois. Gravé à la maison Mo hai (1859).18 livres.
Resumo:
Qualitative spatial reasoning (QSR) is an important field of AI that deals with qualitative aspects of spatial entities. Regions and their relationships are described in qualitative terms instead of numerical values. This approach models human based reasoning about such entities closer than other approaches. Any relationships between regions that we encounter in our daily life situations are normally formulated in natural language. For example, one can outline one's room plan to an expert by indicating which rooms should be connected to each other. Mereotopology as an area of QSR combines mereology, topology and algebraic methods. As mereotopology plays an important role in region based theories of space, our focus is on one of the most widely referenced formalisms for QSR, the region connection calculus (RCC). RCC is a first order theory based on a primitive connectedness relation, which is a binary symmetric relation satisfying some additional properties. By using this relation we can define a set of basic binary relations which have the property of being jointly exhaustive and pairwise disjoint (JEPD), which means that between any two spatial entities exactly one of the basic relations hold. Basic reasoning can now be done by using the composition operation on relations whose results are stored in a composition table. Relation algebras (RAs) have become a main entity for spatial reasoning in the area of QSR. These algebras are based on equational reasoning which can be used to derive further relations between regions in a certain situation. Any of those algebras describe the relation between regions up to a certain degree of detail. In this thesis we will use the method of splitting atoms in a RA in order to reproduce known algebras such as RCC15 and RCC25 systematically and to generate new algebras, and hence a more detailed description of regions, beyond RCC25.
Resumo:
Rapport de recherche
Resumo:
Exam questions and solutions on a variety of calculus topics.
Resumo:
Notes, exercises, exam questions and solutions for a second year analysis course.
Resumo:
Word notes for a first year university calculus course