901 resultados para Calcium Handling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Obesity is a complex multifactorial disorder that is often associated with cardiovascular diseases. Research on experimental models has suggested that cardiac dysfunction in obesity might be related to alterations in myocardial intracellular calcium (Ca2+) handling. However, information about the expression of Ca2+-related genes that lead to this abnormality is scarce. We evaluated the effects of obesity induced by a high-fat diet in the expression of Ca2+-related genes, focusing the L-type Ca2+ channel (Cacna1c), sarcolemmal Na+/Ca2+ exchanger (NCX), sarcoplasmic reticulum Ca2+ ATPase (SERCA2a), ryanodine receptor (RyR2), and phospholamban (PLB) mRNA in rat myocardium. Male 30-day-old Wistar rats were fed a standard (control) or high-fat diet (obese) for 15 weeks. Obesity was defined as increased percent of body fat in carcass. The mRNA expression of Ca2+-related genes in the left ventricle was measured by RT-PCR. Compared with control rats, the obese rats had increased percent of body fat, area under the curve for glucose, and leptin and insulin plasma concentrations. Obesity also caused an increase in the levels of SERCA2a, RyR2 and PLB mRNA (P < 0.05) but did not modify the mRNA levels of Cacna1c and NCX. These findings show that obesity induced by high-fat diet causes cardiac upregulation of Ca2+ transport_related genes in the sarcoplasmic reticulum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inhibitory effect of hydrogen peroxide (H(2)O(2)) on glucose-stimulated insulin secretion was previously reported. However, the precise mechanism involved was not systematically investigated. In this study, the effects of low concentrations of H(2)O(2) (5-10 mu mol/L) on glucose metabolism, intracellular calcium ([Ca(2+)](i)) oscillations, and dynamic insulin secretion in rat pancreatic islets were investigated. Low concentrations of H(2)O(2) impaired insulin secretion in the presence of high glucose levels (16.7 mmol/L). This phenomenon was observed already after 2 minutes of exposure to H(2)O(2). Glucose oxidation and the amplitude of [Ca(2+)](i); oscillations were dose-dependently suppressed by H(2)O(2). These findings indicate that low concentrations of H(2)O(2) reduce insulin secretion in the presence of high glucose levels via inhibition of glucose metabolism and consequent impairment in [Ca(2+)](i); handling. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

First-order temporal logic is a concise and powerful notation, with many potential applications in both Computer Science and Artificial Intelligence. While the full logic is highly complex, recent work on monodic first-order temporal logics has identified important enumerable and even decidable fragments including the guarded fragment with equality. In this paper, we specialise the monodic resolution method to the guarded monodic fragment with equality and first-order temporal logic over expanding domains. We introduce novel resolution calculi that can be applied to formulae in the normal form associated with the clausal resolution method, and state correctness and completeness results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electronic contracts are a means of representing agreed responsibilities and expected behaviour of autonomous agents acting on behalf of businesses. They can be used to regulate behaviour by providing negative consequences, penalties, where the responsibilities and expectations are not met, i.e. the contract is violated. However, long-term business relationships require some flexibility in the face of circumstances that do not conform to the assumptions of the contract, that is, mitigating circumstances. In this paper, we describe how contract parties can represent and enact policies on mitigating circumstances. As part of this, we require records of what has occurred within the system leading up to a violation: the provenance of the violation. We therefore bring together contract-based and provenance systems to solve the issue of mitigating circumstances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Obesity has been shown to impair myocardial performance. Nevertheless, the mechanisms underlying the participation of calcium (Ca2+) handling on cardiac dysfunction in obesity models remain unknown. L-type Ca2+ channels and sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA2a), may contribute to the cardiac dysfunction induced by obesity. The purpose of this study was to investigate whether myocardial dysfunction in obese rats is related to decreased activity and/or expression of L-type Ca2+ channels and SERCA2a. Male 30-day-old Wistar rats were fed standard (C) and alternately four palatable high-fat diets (Ob) for 15 weeks. Obesity was determined by adiposity index and comorbidities were evaluated. Myocardial function was evaluated in isolated left ventricle papillary muscles under basal conditions and after inotropic and lusitropic maneuvers. L-type Ca2+ channels and SERCA2a activity were determined using specific blockers, while changes in the amount of channels were evaluated by Western blot analysis. Phospholamban (PLB) protein expression and the SERCA2a/PLB ratio were also determined. Compared with C rats, the Ob rats had increased body fat, adiposity index and several comorbidities. The Ob muscles developed similar baseline data, but myocardial responsiveness to post-rest contraction stimulus and increased extracellular Ca2+ was compromised. The diltiazem promoted higher inhibition on developed tension in obese rats. In addition, there were no changes in the L-type Ca2+ channel protein content and SERCA2a behavior (activity and expression). In conclusion, the myocardial dysfunction caused by obesity is related to L-type Ca2+ channel activity impairment without significant changes in SERCA2a expression and function as well as L-type Ca2+ protein levels. J. Cell. Physiol. 226: 2934-2942, 2011. (C) 2011 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in Ca-45 uptake and insulin secretion in response to glucose, leucine, and arginine were measured in isolated islets derived from 4-week-old rats born of mothers maintained with normal protein (NP, 17%) or low protein (LP, 6%) diet during pregnancy and lactation. Glucose provoked a dose-dependent stimulation of insulin secretion in both groups of islets, with basal (2.8 mmol/L glucose) and maximal release (27.7 mmol/L glucose) significantly reduced in LP compared with NP islets. In the LP group the concentration-response curve to glucose was shifted to the right compared with the NP group, with the half-maximal response occurring at 16.9 and 13.3 mmol/L glucose, respectively. In LP islets, glucose-induced first and second phases of insulin secretions were drastically reduced. In addition, insulin response to individual amino acids, or in association with glucose, was also significantly reduced in the LP group compared with NP islets. Finally, in LP islets the Ca-45 uptake after 5 minutes or 90 minutes of incubation (which reflect mainly the entry and retention, respectively, of Ca2+), was lower than in NP islets. These data indicate that in malnourished rats both initial and sustained phases of insulin secretion in response to glucose were reduced. This poor secretory response to nutrients seems to be the consequence of an altered Ca2+ handling by malnourished islet cells. (J. Nutr. Biochem. 10:37-43, 1999) (C) Elsevier B.V. 1999. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study verified the effects of CaSO4 on physiological responses of the tropical fish matrinxãBrycon amazonicus(200.2 ± 51.1 g) in water containing CaSO4 after a 4-h transportation at concentrations of: 0, 75, 150, and 300 mg L-1. Blood samples were collected prior to transportation (initial levels), immediately after packaging, at arrival, and 24 h and 96 h after transportation (recovery). Cortisol levels increased after ackaging (118.2 ± 14.2 ng ml-1), and decreased slightly after transportation in water containing CaSO4 (106.8 ± 14.1), but remained higher than initial levels (21.0 ± 2.6 ng ml)1). Fish kept at 150 mg L-1 CaSO4 reached the pre-transportation levels at 24 h of recovery. Blood glucose increased after transportation in all treatments (8.2 ± 0.2 mmol L-1) and declined after full recovery to values below initial levels (4.8 ± 0.1 mmol L-1). Chloride levels did not change in CaSO4 treatments; serum sodium concentrations decreased after packaging and after transportation. Serum calcium levels did not differ among treatments, but decreased after packaging and increased at 96 h of recovery. Hematocrit and the number of red blood cells were higher in all treatments after packaging and arrival, except in fish exposed to 300 mg L-1 CaSO4. Mean corpuscular volume increased in 75 mg L-1 CaSO4, which reached the higher VCM after transportation. Hemoglobin levels increased only after transportation, regardless of calcium sulfate levels. Handling before transportation and transportation itself were both stressful to fish; calcium sulfate at concentrations tested in the present work had a moderate influence in the reduction of stress responses. © 2009 Blackwell Verlag, Berlin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Disturbances of cation homeostasis, particularly hypomagnesaemia, are a frequent consequence of treatment with aminoglycoside antibiotics. These disturbances are thought to result from renal wasting of cations and administration of gentamicin to rats has been shown to produce hypercalciuria and hypermagnesiuria. The aims of this study were to attempt to elucidate these responses in anaesthetised rats infused with gentamicin and to use this model to investigate the mechanisms of these effects. Fischer 344 rats were anaesthetised and surgically prepared for clearance experiments. Infusion of gentamicin in isotonic saline increased urinary output of calcium and magnesium while sodium and potassium output were unaffected. These elevations in calcium and magnesium excretion were explained by reduced tubular reabsorption of these cations. Both the hypercalciuric and hypermagnesiuric responses to gentamicin were extremely rapid and were sustained during drug infusion; when gentamicin infusion ceased both responses were rapidly reversible. Infusion of another aminoglycoside, tobramycin, produced very similar effects to gentamicin. The hypercalciuria and hypermagnesiuria caused by gentimicin infusion were unaffected by parathyroidectomy. The peak increases in calcium and magnesium output brought about by infusion of gentamicin with frusemide were not significantly different to the increases produced by frusemide alone. The site at which gentamicin interferes with calcium and magnesium reabsorption cannot be firmly deduced from these results. However, the known close association between calcium and sodium reabsorption in the proximal tubule implies that gentamicin is unlikely to change proximal calcium reabsorption without a similar change in proximal sodium reabsorption. The similarity between the hypercalciuric and hypermagnesiuric effects of frusemide alone and the effects of frusemide infused simultaneously with gentamicin suggests that gentamicin may act at the same site as the diuretic, the thick ascending limb of the loop of Henle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypertension, a major risk factor in the cardiovascular system, is characterized by an increase in the arterial blood pressure. High dietary sodium is linked to multiple cardiovascular disorders including hypertension. Salt sensitivity, a measure of how the blood pressure responds to salt intake is observed in more than 50% of the hypertension cases. Nitric Oxide (NO), as an endogenous vasodilator serves many important biological roles in the cardiovascular physiology including blood pressure regulation. The physiological concentrations for NO bioactivity are reported to be in 0-500 nM range. Notably, the vascular response to NO is highly regulated within a small concentration spectrum. Hence, much uncertainty surrounds how NO modulates diverse signaling mechanisms to initiate vascular relaxation and alleviate hypertension. Regulating the availability of NO in the vasculature has demonstrated vasoprotective effects. In addition, modulating the NO release by different means has proved to restore endothelial function. In this study we addressed parameters that regulated NO release in the vasculature, in physiology and pathophysiology such as salt sensitive hypertension. We showed that, in the rat mesenteric arterioles, Ca2+ induced rapid relaxation (time constants 20.8 ± 2.2 sec) followed with a much slower constriction after subsequent removal of the stimulus (time constants 104.8 ± 10.0 sec). An interesting observation was that a fourfold increase in the Ca 2+ frequency improved the efficacy of arteriolar relaxation by 61.1%. Our results suggested that, Ca2+ frequency-dependent transient release of NO from the endothelium carried encoded information; which could be translated into different steady state vascular tone. Further, Agmatine, a metabolite of L-arginine, as a ligand, was observed to relax the mesenteric arterioles. These relaxations were NO-dependent and occurred via &agr;-2 receptor activity. The observed potency of agmatine (EC50, 138.7 ± 12.1 ± μM; n=22), was 40 fold higher than L-arginine itself (EC50, 18.3 ± 1.3 mM; n = 5). This suggested us to propose alternative parallel mechanism for L-arginine mediated vascular relaxation via arginine decarboxylase activity. In addition, the biomechanics of rat mesentery is important in regulation of vascular tone. We developed 2D finite element models that described the vascular mechanics of rat mesentery. With an inverse estimation approach, we identified the elasticity parameters characterizing alterations in normotensive and hypertensive Dahl rats. Our efforts were towards guiding current studies that optimized cardiovascular intervention and assisted in the development of new therapeutic strategies. These observations may have significant implications towards alternatives to present methods for NO delivery as a therapeutic target. Our work shall prove to be beneficial in assisting the delivery of NO in the vasculature thus minimizing the cardiovascular risk in handling abnormalities, such as hypertension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Revascularization outcome depends on microbial elimination because apical repair will not happen in the presence of infected tissues. This study evaluated the microbial composition of traumatized immature teeth and assessed their reduction during different stages of the revascularization procedures performed with 2 intracanal medicaments. Fifteen patients (7-17 years old) with immature teeth were submitted to the revascularization procedures; they were divided into 2 groups according to the intracanal medicament used: TAP group (n = 7), medicated with a triple antibiotic paste, and CHP group (n = 8), dressed with calcium hydroxide + 2% chlorhexidine gel. Samples were taken before any treatment (S1), after irrigation with 6% NaOCl (S2), after irrigation with 2% chlorhexidine (S3), after intracanal dressing (S4), and after 17% EDTA irrigation (S5). Cultivable bacteria recovered from the 5 stages were counted and identified by means of polymerase chain reaction assay (16S rRNA). Both groups had colony-forming unit counts significantly reduced after S2 (P < .05); however, no significant difference was found between the irrigants (S2 and S3, P = .99). No difference in bacteria counts was found between the intracanal medicaments used (P = .95). The most prevalent bacteria detected were Actinomyces naeslundii (66.67%), followed by Porphyromonas endodontalis, Parvimonas micra, and Fusobacterium nucleatum, which were detected in 33.34% of the root canals. An average of 2.13 species per canal was found, and no statistical correlation was observed between bacterial species and clinical/radiographic features. The microbial profile of infected immature teeth is similar to that of primarily infected permanent teeth. The greatest bacterial reduction was promoted by the irrigation solutions. The revascularization protocols that used the tested intracanal medicaments were efficient in reducing viable bacteria in necrotic immature teeth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pancreatic β-cells are highly sensitive to suboptimal or excess nutrients, as occurs in protein-malnutrition and obesity. Taurine (Tau) improves insulin secretion in response to nutrients and depolarizing agents. Here, we assessed the expression and function of Cav and KATP channels in islets from malnourished mice fed on a high-fat diet (HFD) and supplemented with Tau. Weaned mice received a normal (C) or a low-protein diet (R) for 6 weeks. Half of each group were fed a HFD for 8 weeks without (CH, RH) or with 5% Tau since weaning (CHT, RHT). Isolated islets from R mice showed lower insulin release with glucose and depolarizing stimuli. In CH islets, insulin secretion was increased and this was associated with enhanced KATP inhibition and Cav activity. RH islets secreted less insulin at high K(+) concentration and showed enhanced KATP activity. Tau supplementation normalized K(+)-induced secretion and enhanced glucose-induced Ca(2+) influx in RHT islets. R islets presented lower Ca(2+) influx in response to tolbutamide, and higher protein content and activity of the Kir6.2 subunit of the KATP. Tau increased the protein content of the α1.2 subunit of the Cav channels and the SNARE proteins SNAP-25 and Synt-1 in CHT islets, whereas in RHT, Kir6.2 and Synt-1 proteins were increased. In conclusion, impaired islet function in R islets is related to higher content and activity of the KATP channels. Tau treatment enhanced RHT islet secretory capacity by improving the protein expression and inhibition of the KATP channels and enhancing Synt-1 islet content.