1000 resultados para Calcidiscus leptoporus flux
Resumo:
Shipboard investigation of magnetostratigraphy and shore-based investigation of diatoms and calcareous nannofossils were used to identify datum events in sedimentary successions collected at Ocean Drilling Program (ODP) Leg 201 Site 1225. The goal was to extend the magnetic record previously studied at the same site, ODP Leg 138 Site 851, and provide a comprehensive age model for Site 1225. Two high-magnetic intensity zones at 0-70 and 200-255 meters below seafloor (mbsf) were correlated with lithologic Subunits IA and IC in Hole 1225A. Subunit IA (0-70 mbsf) contains the magnetic reversal record until the Cochiti Subchronozone (3.8 Ma) and has a sedimentation rate of 1.7 cm/k.y. This agrees with previous work done at Site 851. Subunit IC (200-255 mbsf) was not sampled at Site 851. Diatom and nannofossil biostratigraphy constrained this subunit, and we found it to contain the magnetic reversal record between Subchrons C4n.2r and C5n.2n (8.6-9.7 Ma), yielding a sedimentation rate of 2.7 cm/k.y. Biostratigraphy was used to establish the sedimentation rates within Subunits IB and ID (70-200 mbsf and 255-300 mbsf, respectively). These subunits had higher sedimentation rates (~3.4 cm/k.y.) and coincide with the late Miocene-early Pliocene biogenic bloom event (4.5-7 Ma) and the Miocene global cooling trend (10-15 Ma). High biogenic productivity associated with these subunits resulted in the pyritization of the magnetic signal. In lithologic Subunit ID, basement flow is another factor that may be altering the magnetic signal; however, the good correlation between the biostratigraphy and magnetostratigraphy indicates that the magnetic record was locked-in near the seafloor and suggests the age model is robust.
Resumo:
This data was collected during a cruise across Drake Passage in the Southern Ocean in February 2009. This data consists of coccolithophore abundance, calcification and primary production rates, carbonate chemistry parameters and ancillary data of macronutrients, chlorophyll-a, average mixed layer irradiance, daily irradiance above the sea surface, euphotic and mixed layer depth, temperature and salinity.
Resumo:
Upper Quaternary calcareous nannofossils contained in drill cores taken in the heavily sedimented Middle Valley of the northern Juan de Fuca Ridge in the northeast Pacific Ocean (Ocean Drilling Program Leg 139) are investigated. The host sediments have been subjected at depth to high temperatures and hot hydrothermal fluids that have altered or destroyed in part or in toto the nannofossil assemblages, thereby raising at several sites the level of the first (deepest) stratigraphic occurrence of nannofossils or of the important Emiliania huxleyi datum. The degree of alteration of the nannofossil assemblages is dependent on the intensity of the hydrothermal activity, which is indicated by paleotemperatures derived independently from studies of color alteration of palynomorphs and by vitrinite reflectance (Mao et al., this volume). State of preservation and the downhole level at which assemblages have been destroyed correlate well with the inferred paleotemperature estimates. Destruction of the assemblages appears to be species selective and follows in general the dissolution rankings determined independently by others for Recent nannofossils of the Pacific basin. More systematic correlation of these phenomena is hampered, however, by the fact that nannofossil preservation is already quite variable at the time of deposition because of the predominance of turbidite activity in the study area.
Resumo:
Twenty routinely used nannofossil datums in the late Neogene and Quaternary were identified at three Blake Ridge sites drilled during Leg 164. The quantitative investigation of the nannofossil assemblages in 236 samples selected from Hole 994C provide new biostratigraphic and paleoceanographic information. Although mostly overlooked previously, Umbilicosphaera aequiscutum is an abundant component of the late Neogene flora, and its last occurrence at ~2.3 Ma is a useful new biostratigraphic event. Small Gephyrocapsa evolved within the upper part of Subzone CN11a (~4.3 Ma), and after an initial acme, it temporarily disappeared for 400 k.y., between 2.9 and 2.5 Ma. Medium-sized Gephyrocapsa evolved in the latest Pliocene ~2.2 Ma), and after two short temporary disappearances, common specimens occurred continuously just above the Pliocene/Pleistocene boundary. The base of Subzone CN13b should be recognized as the beginning of the continuous occurrence of medium-sized (>4 µm) Gephyrocapsa. Stratigraphic variation in abundance of the very small placoliths and Florisphaera profunda alternated, indicating potential of the former as a proxy for the paleoproductivity. At this site, it is likely that upwelling took place during three time periods in the late Neogene (6.0-4.6 Ma, 2.3-2.1 Ma, and 2.0-1.8 Ma) and also in the early Pleistocene (1.4-0.9 Ma). Weak upwelling is also likely to have occurred intermittently through the late Pliocene. Due to the sharp and abrupt turnover of the nannofossils, which resulted from an evolution of very competitive species, the paleoproductivity of the late Pleistocene is not clear. The site was mostly in an oligotrophic central gyre setting during the 4.6- to 2.3-Ma interval, intermittently between 2.1 and 1.4 Ma, and continuously for the last several tens of thousand years.
Resumo:
A micropaleontological study of planktonic assemblages on the partially laminated sapropel S5 (late Pleistocene, marine isotope stage (MIS) 5e) was performed in two piston cores from Urania Basin area (eastern Mediterranean, west of Crete): UM94PC16 and UM94PC31 recovered during a PALEOFLUX Project Cruise. The abundance of Florisphaera profunda indicates the development of a deep chlorophyll maximum (DCM) before the anoxic condition at bottom were established, whereas patterns of upper photic zone coccoliths suggest extreme oligotrophy in surface water. The short appearance of Globorotalia scitula and the presence of Globigerinoides ruber in the lower part of sapropel testify to a thermal stratification, also recorded by changes in primary producers. During G. scitula occurrence, diatoms, mainly represented by Pseudosolenia calcar-avis, appear and bloom because of their capability in using nutrients from DCM. Scanning electron microscope analyses performed on selected intervals from UM94PC16 show that the sapropel is organized in microlaminae mostly composed by siliceous microfossils. In particular, sapropel S5 could be related to an enhanced nutrient availability in the lower-middle part of the photic zone, stratified conditions, and a higher continental input.
Resumo:
The 136 m of calcareous oozes recovered in Hole 810C span the interval from upper Maastrichtian to middle Pleistocene. Three major hiatuses interrupt the sequence, with the topmost part of the Maastrichtian through the entire lower Paleocene, most of the lower Eocene, and the entire middle Eocene through most of the middle Miocene missing. Severe reworking and displacement affected the lower part of the succession from the Maastrichtian through the middle Miocene. Reworking and displacement gradually decreased in the upper portion. Calcareous nannofossil biostratigraphy enabled us to calibrate precisely the nearly complete magnetic reversal sequence of the Pliocene to the late Pleistocene. Two minor hiatuses detected by calcareous nannofossils across the Pliocene/Pleistocene boundary and in the upper lower Pleistocene, respectively, resulted in shortening of the Olduvai and Jaramillo Events within the Matuyama Chron of the magnetic reversal sequence.
Resumo:
ODP Leg 119 drilled 11 sites on the Kerguelen Plateau (southern Indian Ocean) and Prydz Bay (East Antarctica). Upper Pliocene through Quaternary sediments were recovered at Site 736 on the northern Kerguelen Plateau; calcareous nannofossils occurred in only a few samples. Over 700 m of middle Eocene through Quaternary sediments was cored at Site 737 on the northern Kerguelen Plateau, and calcareous nannofossils are abundant in the middle Eocene through the middle Miocene sediments. Nearly 500 m of sediments ranging from the lower Turanian to the Quaternary was recovered at Site 738 on the southern Kerguelen Plateau; calcareous nannofossils are abundant from the Miocene downward. Calcareous nannofossils are also abundant in the upper Eocene through Miocene section from Site 744 on the southern Kerguelen Plateau. Except for Core 119-746A-13H, the Neogene sequences drilled at deep-water Sites 745 and 746 off the southern Kerguelen Plateau are devoid of calcareous nannofossils. Occurrences of calcareous nannofossils were generally rare and sporadic at Sites 739 and 742 in Prydz Bay and suggest that the diamictite sequences recovered is as old as middle Eocene-early Oligocene age. Other sites drilled in Prydz Bay (Sites 740, 741, and 743) did not yield calcareous nannofossils. Species diversity of calcareous nannofossils was low (about a dozen) in the southern Indian Ocean in the Late Cretaceous. High-latitude nanno floral characteristics are apparent after the Cretaceous/Tertiary boundary extinctions. Cold climatic conditions limited Oligocene calcareous nannofossil assemblages to fewer than a dozen species, and extinctions of species generally were not compensated by originations of new species. Only a few species of calcareous nannofossils were found in the Miocene sequences, in which Coccolithuspelagicus and one or two species of Reticulofenestra exhibit extreme (0%-100%) fluctuations in assemblage dominance, and these fluctuations may reflect rapid fluctuations in the surface-water temperatures. Further deterioration of climate in the late Neogene essentially excluded calcareous nannoplankton from the Southern Ocean. Significantly warmer water conditions during part of the early-middle Pleistocene were inferred by a few lower-middle Pleistocene calcareous nannofossil species found on the Kerguelen Plateau. The calcareous nannofossil zonation of Roth (1978 doi:10.2973/dsdp.proc.44.134.1978) can be applied to the Upper Cretaceous section recovered at Site 738, and the zonation of Okada and Bukry (1980 doi:10.1016/0377-8398(80)90016-X) can be applied without much difficulty to the Paleocene to middle Eocene sequences from the Kerguelen Plateau. However, some conventional upper Paleogene markers are not useful for southern high latitudes, whereas a few nonconventional species events are useful for subdividing the upper Paleogene sequences. The latter species events include the first occurrence (FO) of Reticulofenestra reticulata, the FO and last occurrence (LO) of Reticulofenestra oamaruensis, the LO of Isthmolithus recurvus, and the LO of Chiasmolithus altus. As the Neogene sequences from the southern Indian Ocean contain only a few long-ranging, cold-water species, or are devoid of coccoliths, calcareous nannofossil zonations remain virtually unworkable for the Neogene in the high-latitude southern Indian Ocean as in other sectors of the Southern Ocean.
Resumo:
Long sequences of Upper Cretaceous through Quaternary sediments rich in calcareous and siliceous microfossils were recovered at Ocean Drilling Program Sites 689 and 690 on Maud Rise off East Antarctica. These sites have become the southernmost anchor in the Atlantic Basin for bio-, magneto-, chemostratigraphic, and paleobiogeographic studies. ODP Sites 692 and 693 on the Weddell Sea margin of East Antarctica and Site 696 on the South Orkney microcontinent of West Antarctica yielded calcareous nannofossils within some stratigraphic intervals. Sites 691, 692, 694, 695, and 697 did not recover Cenozoic calcareous nannofossils. Calcareous nannofossil biostratigraphy suggests a major hiatus across the Paleogene/Neogene boundary at Sites 689 and 690, and two additional hiatuses in the middle Eocene-lower Oligocene section at Site 690. Correlation with magnetostratigraphy reveals: the last occurrence (LO) of Reticulofenestra umbilica at Maud Rise is over 1 m.y. younger than that at the middle-latitude sites; the LO of Isthmolithus recurvus is synchronous in the middle-latitude and high-latitude areas (about 34.8 Ma); Reticulofenestra oamaruensis ranges from 38.0 to 36.0 Ma at Maud Rise; Reticulofenestra reticulata has a shorter range at Maud Rise (42.1 to 38.9 Ma) than at the middle-latitude DSDP Site 516; the range of Chiasmolithus oamaruensis is diachronous over different latitudes; and the LO of Chiasmolithus solitus is a good datum at 41.3 Ma from 30°S to 65°S in the South Atlantic Ocean. Comparison of calcareous nannofossil abundances in a latitudinal transect shows: Reticulofenestra bisecta is a temperate-water species and its LO, which crosses below that of Chiasmolithus altus at Maud Rise, is not applicable for the Paleogene/Neogene boundary in high southern latitude areas; Clausicoccus fenestratus is rare or absent at Maud Rise and can not be used as a marker; Coccolithus formosus is a warm-water species which disappeared earlier toward higher latitudes. Calcareous nannofossil assemblages indicate that by at least the middle Eocene, surface water temperatures became considerably lower in the high southern latitudes than in the middle-latitude areas and that there have been more extreme cold events in the high latitudes during the Neogene. Bicolumnus ovatus n. gen., n. sp. is proposed in this paper.
Resumo:
Continental rise Site 905 yielded upper Miocene and Pliocene uniform hemipelagic mud (a contourite) from approximately 215 to 540 meters below seafloor. The nannofossil biostratigraphy of this interval was reexamined using closely spaced samples from core interiors. Additionally, total nannofossil abundances and dominant species and species group abundances were determined to evaluate the potential of this section for extracting sequence stratigraphic information. The data indicate that the putative hiatuses at the end of the late Pliocene (Zones NN17 and NN18) and in the early Pliocene (Zones NN13 and NN14) probably are condensed intervals, but the base of the late Miocene is almost certainly marked by an unconformity. Judging from carbonate content and sedimentation rate both, nannofossil abundance may be governed by carbonate dissolution or by siliciclastic dilution. Consequently, condensed sections cannot be identified by the abundance of pelagic component in the sediment alone, as is possible in equivalent age Gulf of Mexico sediments. Where nannofossil preservation is adequate in consecutive samples, as in the early Pliocene and latest late Miocene, total nannofossil abundance fluctuates regularly and with a periodicity of less than 105 yr, which suggests that dilution of the pelagic component occurred with a frequency probably related to astronomical forcing.
Resumo:
Calcareous nannofossils were studied by light microscopy in Neogene sedimentary rocks recovered at four sites of the Ocean Drilling Program Leg 127 in the Japan Sea. Nannofossils occur sporadically at all sites, and allow recognition of seven zones and two subzones; four zones in the Holocene to the uppermost Pliocene, and three zones and two subzones in the middle to lower Miocene. Forty-eight nannofossil species are recognized in 95 of the 808 irregularly-spaced samples taken from all the sites. The nannofossil assemblages in the Miocene are more diverse than those in the Holocene to Pliocene sedimentary interval. The greater diversity and the presence of warm-water taxa, such as Sphenolithus and discoasters in the upper lower Miocene to lower middle Miocene, suggest a relatively warm and stable surface-water condition, attributed to an increased supply of warm water from the subtropical western Pacific Ocean. Site 797 in the southern part of the Yamato Basin contains the most complete and the oldest nannofossil record so far reported from the Japan Sea. The lowermost nannofossil zone at this site, the Helicosphaera ampliaperta Zone (15.7-18.4 Ma) gives a minimum age for the Yamato Basin. This age range predates rotation of southwest Japan, an event previously believed to be caused by the opening of the Japan Sea.
Resumo:
This study analyzes coccolithophore abundance fluctuations (e.g., Emiliania huxleyi, Gephyrocapsa specimens, and Florisphaera profunda) in core MD01-2444 sediment strata retrieved at the Iberian Margin, northeastern Atlantic Ocean. Coccolithophores are calcareous nannofossils, a major component of the oceanic phytoplankton, which provide information about past ecological and climatological variability. Results are supported by data on fossil organic compounds (sea surface temperatures, alkenones, and n-hexacosan-1-ol index) and geochemical analyses (benthic d13Ccc and planktonic d18Occ isotopes). Three scenarios are taken into account for this location at centennial-scale resolution over the last 70,000 years: the Holocene and the stadial and interstadial modes. The different alternatives are described by means of elements such as nutrients; upwelling phenomena; temperatures at surface and subsurface level; or the arrival of surface turbid, fresh, and cold waters due to icebergs, low sea level, increased aridity, and dust. During the Holocene, moderate primary productivity was observed (mainly concentrated in E. huxleyi specimens); surface temperatures were at maxima while the water column was highly ventilated by northern-sourced polar deep waters and warmer subsurface, nutrient-poor subtropical waters. Over most of the last glacial stadials, surface productivity weakened (higher F. profunda and reworked specimen percentages and lower diunsaturated and triunsaturated C37 alkenones); the arrival of cold Arctic surface waters traced by tetraunsaturated C37 peaks and large E. huxleyi, together with powerful ventilated southern-sourced polar deep waters, disturbed, in all likelihood, the delicate vertical equilibrium while preventing significant upwelling mixing. Finally, during the last glacial interstadials (lower F. profunda percentages, nonreworked material, and higher diunsaturated and triunsaturated C37 alkenones) a combined signal is observed: warm surface temperatures were concurrent with generally low oxygenation of the deep-sea floor, moderate arrival of northern-sourced deep waters, and subsurface cold, nutrient-rich, recently upwelled waters, probably of polar origin; these particular conditions may have promoted vertical mixing while enhancing surface primary productivity (mainly of Gephyrocapsa specimens).
Resumo:
Ocean Drilling Program Leg 205 of the research vessel JOIDES Resolution was a return expedition to the Leg 170 sites located on the Costa Rica subduction zone. Here the entire sediment cover on the incoming Cocos plate, including significantly large sections of calcareous nannofossil ooze and chalk, is underthrust beneath the overriding Caribbean plate. The large amount of subducted carbonate produces characteristic styles of volcanic and seismic activity that differ from those found farther along strike in Nicaragua and elsewhere. An understanding of the fate of subducted carbonate sediment sections is an essential component to our understanding of the global biogeochemical cycling of carbon dioxide. Because Leg 205 drilling operations were performed within meters of the Leg 170 drill sites occupied during October-December 1996, minimal coring was done during Leg 205. Although the biostratigraphy of the Leg 170 sites has since been documented in detail, questions remained regarding the age and nature of a gabbro sill that was only partially penetrated by coring during Leg 170. Coring operations during Leg 205 fully penetrated the gabbro sill, followed by an additional 12 m of sediments below the sill, and then ~160 m of gabbro. Coring halted at 600 meters below seafloor (mbsf). Calcareous nannofossil age dating of the sediments immediately above the igneous sill, as well as the sediment between the sill and the lower igneous unit, indicates a minimum age of 15.6 Ma and a maximum age of 18.2 Ma for the sediments. This implies that the sill was emplaced more recently than 18.2 Ma. The calcareous nannofossil assemblage in baked sediments in contact with the top of the lower igneous unit also suggests that the maximum age for emplacement is 18.2 Ma. At Site 1254, coring was accomplished between 150 and 230 mbsf (prism section), and from 300 to 367.5 mbsf (prism and through the décollement into the underthrust section). In the interval from 150 to 322 mbsf, the biostratigraphic analysis of calcareous nannofossils suggests that the sediments are early Pleistocene age between 150 and 161 mbsf, late Pliocene age from 161 to 219 mbsf, and early Pliocene age from 219 to 222 mbsf (no younger than 3.75 Ma). The lack of marker fossils in the interval of sediments cored from 300 to 350.6 mbsf does not allow for any age determinations; however, sediments from 351.6 to 359.81 mbsf could be age dated and are also early Pliocene age, but no younger than 3.75 Ma.
Resumo:
During Leg 92 of the Deep Sea Drilling Project, sediments containing calcareous nannofossils of latest Oligocene to Holocene age were recovered from 14 holes at six sites (597 to 602) along the East Pacific Rise. The combined sections yield a virtually complete record for the region, with a compressed upper Miocene to Pleistocene interval. The nannofossil content of 14 U.S.N.S. Eltanin piston cores from the study area were also examined in order to supplement data generated during Leg 92. Two taxonomically new combinations are presented: Sphenolithus umbellus and Pontosphaera segmenta. Assemblages of calcareous nannofossils juxtaposed in reversed stratigraphic order within the upper Miocene provide strong evidence for downslope transport of sediments along the East Pacific Rise during the Messinian. Narrow bands of dark metalliferous sediment of coccolith Zone CN8b alternate with normal light-colored, in situ, pelagic sequences of Zone CN9b. This may indicate more vigorous bottom current activity between 5.40 and 6.70 Ma.
Resumo:
During Ocean Drilling Program Leg 126, we recovered three expanded Pleistocene sections from the active backarc rift (Sumisu Rift) and three expanded Oligocene-Miocene sections from the forearc basin of the Izu-Bonin volcanic island arc. Quantitative analysis of the Pleistocene nannofossils revealed five major assemblages between 0 and LO Ma: Assemblage 1 (Holocene-0.085 Ma) contains dominant Emiliania huxleyi; Assemblage 2 (ca. 0.085-0.275 Ma) contains dominant small Gephyrocapsa and common E. huxleyi and Gephyrocapsa oceanica; Assemblage 3 (ca. 0.275-0.6 Ma) contains dominant Gephyrocapsa caribbeanica; Assemblage 4 (ca. 0.6-0.9 Ma) contains a peak abundance of small Gephyrocapsa in the middle part, and dominant occurrences of two types of G. caribbeanica in the lower and upper parts; and Assemblage 5 (ca. 0.9-1.0 Ma) contains dominant small Gephyrocapsa and common G. caribbeanica and Reticulofenestra asanoi. These assemblages are largely synchronous with similar assemblages recognized from tropical and subtropical regions, and can be used for finer subdivision of the Pleistocene than that based on standard Pleistocene nannofossil datums. The Oligocene-Miocene sections contain several hiatuses: up to 3 m.y. may be missing from the uppermost Oligocene (Zone CP19) at Sites 792 and 793; all of Zone CN2 is missing at Sites 792 and 793; part of Zone CN3 and all of Zone CN4 are missing at Site 792. Biochronology of several nannofossil datums at Leg 126 sites indicate that Sphenolithus distentus, Sphenolithus ciperoensis, Cyclicargolithus floridanus, and Discoaster kugleri have diachronous occurrences compared with other sites in the western Pacific Ocean and Philippine Sea.
Resumo:
Neogene calcareous nannofossils were examined from 10 holes at three sites cored during ODP Leg 105. Sediment recovered in Baffin Bay at Site 645 is virtually barren of calcareous nannofossils, with the exception of a sparse lower Miocene assemblage. Sites 646 and 647 in the Labrador Sea contain upper Miocene to Holocene sediments having numerous barren intervals. Upper Pleistocene fossil coccolithophorid floras in the Labrador Sea indicate alternations of cold subpolar with transitional (subpolar/subtropical) assemblages. Extreme variations in the abundance of Coccolithus pelagicus were observed at Sites 646 and 647. These variations are correlated with stable isotopic data to interpret oceanographic responses to warming and cooling trends. The climatic history indicated by the changes of these assemblages closely approximates the past climatic fluctuations recorded in other North Atlantic cores. One new taxon, Discoaster bergenii, is described.