1000 resultados para Cad systems
Resumo:
Objectives: The aim of this study was to investigate the internal fit (IF) of glass-infiltrated alumina (ICA - In-Ceram Alumina), yttria-stabilized tetragonal zirconia polycrystals (Y-TZP - IPS e.max ZirCAD), and metal-ceramic (MC - Ni-Cr alloy) crowns. Material and Methods: Sixty standardized resin-tooth replicas of a maxillary first molar were produced for crown placement and divided into 3 groups (n=20 each) according to the core material used (metal, ICA or Y-TZP). The IF of the crowns was measured using the replica technique, which employs a light body polyvinyl siloxane impression material to simulate the cement layer thickness. The data were analyzed according to the surfaces obtained for the occlusal space (OS), axial space (AS) and total mean (TM) using two-way ANOVA with Tukey's multiple comparison test (p<0.05). Results: No differences among the different areas were detected in the MC group. For the Y-TZP and ICA groups, AS was statistically lower than both OS and TM. No differences in AS were observed among the groups. However, OS and TM showed significantly higher values for ICA and Y-TZP groups than MC group. Comparisons of ICA and Y-TZP revealed that OS was significantly lower for Y-TZP group, whereas no differences were observed for TM. Conclusions: The total mean achieved by all groups was within the range of clinical acceptability. However, the metal-ceramic group demonstrated significantly lower values than the all-ceramic groups, especially in OS.
Resumo:
OBJECTIVES: The aim of this study was to investigate the internal fit (IF) of glass-infiltrated alumina (ICA - In-Ceram Alumina), yttria-stabilized tetragonal zirconia polycrystals (Y-TZP - IPS e.max ZirCAD), and metal-ceramic (MC - Ni-Cr alloy) crowns. MATERIAL AND METHODS: Sixty standardized resin-tooth replicas of a maxillary first molar were produced for crown placement and divided into 3 groups (n=20 each) according to the core material used (metal, ICA or Y-TZP). The IF of the crowns was measured using the replica technique, which employs a light body polyvinyl siloxane impression material to simulate the cement layer thickness. The data were analyzed according to the surfaces obtained for the occlusal space (OS), axial space (AS) and total mean (TM) using two-way ANOVA with Tukey s multiple comparison test (p<0.05). RESULTS: No differences among the different areas were detected in the MC group. For the Y-TZP and ICA groups, AS was statistically lower than both OS and TM. No differences in AS were observed among the groups. However, OS and TM showed significantly higher values for ICA and Y-TZP groups than MC group. Comparisons of ICA and Y-TZP revealed that OS was significantly lower for Y-TZP group, whereas no differences were observed for TM. CONCLUSIONS: The total mean achieved by all groups was within the range of clinical acceptability. However, the metal-ceramic group demonstrated significantly lower values than the all-ceramic groups, especially in OS.
Resumo:
This in vitro study evaluated the performance of three ceramic and two commonly used polishing methods on two CAD/CAM ceramics. Surface roughness and quality were compared. A glazed group (GLGR) of each ceramic material served as reference. One-hundred and twenty specimens of VITABLOCS Mark II (VITA) and 120 specimens of IPS Empress CAD (IPS) were roughened in a standardized manner. Twenty VITA and 20 IPS specimens were glazed (VITA Akzent Glaze/Empress Universal Glaze). Five polishing methods were investigated (n=20/group): 1) EVE Diacera W11DC-Set (EVE), 2) JOTA 9812-Set (JOTA), 3) OptraFine-System (OFI), 4) Sof-Lex 2382 discs (SOF) and 5) Brownie/Greenie/Occlubrush (BGO). Polishing quality was measured with a surface roughness meter (Ra and Rz values). The significance level was set at alpha=0.05. Kruskal Wallis tests and pairwise Wilcoxon rank sum tests with Bonferroni-Holm adjustment were used. Qualitative surface evaluation of representative specimens was done with SEM. On VITA ceramics, SOF produced lower Ra (p<0.00001) but higher Rz values than GLGR (p=0.003); EVE, JOTA, OFI and BGO yielded significantly higher Ra and Rz values than GLGR. On IPS ceramics, SOF and JOTA exhibited lower Ra values than GLGR (p<0.0001). Equivalent Ra but significantly higher Rz values occurred between GLGR and EVE, OFI or BGO. VITA and IPS exhibited the smoothest surfaces when polished with SOF. Nevertheless, ceramic polishing systems are still of interest to clinicians using CAD/CAM, as these methods are universally applicable and showed an increased durability compared to the investigated silicon polishers.
Resumo:
PURPOSE: This systematic review sought to determine the long-term clinical survival rates of single-tooth restorations fabricated with computer-aided design/computer-assisted manufacture (CAD/CAM) technology, as well as the frequency of failures depending on the CAD/CAM system, the type of restoration, the selected material, and the luting agent. MATERIALS AND METHODS: An electronic search from 1985 to 2007 was performed using two databases: Medline/PubMed and Embase. Selected keywords and well-defined inclusion and exclusion criteria guided the search. All articles were first reviewed by title, then by abstract, and subsequently by a full text reading. Data were assessed and extracted by two independent examiners. The pooled results were statistically analyzed and the overall failure rate was calculated by assuming a Poisson-distributed number of events. In addition, reported failures were analyzed by CAD/CAM system, type of restoration, restorative material, and luting agent. RESULTS: From a total of 1,957 single-tooth restorations with a mean exposure time of 7.9 years and 170 failures, the failure rate was 1.75% per year, estimated per 100 restoration years (95% CI: 1.22% to 2.52%). The estimated total survival rate after 5 years of 91.6% (95% CI: 88.2% to 94.1%) was based on random-effects Poisson regression analysis. CONCLUSIONS: Long-term survival rates for CAD/CAM single-tooth Cerec 1, Cerec 2, and Celay restorations appear to be similar to conventional ones. No clinical studies or randomized clinical trials reporting on other CAD/CAM systems currently used in clinical practice and with follow-up reports of 3 or more years were found at the time of the search.
Resumo:
Objectives: To investigate surface roughness and microhardness of two recent resin-ceramic materials for computer-aided design/computer-aided manufacturing (CAD/CAM) after polishing with three polishing systems. Surface roughness and microhardness were measured immediately after polishing and after six months storage including monthly artificial toothbrushing. Methods: Sixty specimens of Lava Ultimate (3M ESPE) and 60 specimens of VITA ENAMIC (VITA Zahnfabrik) were roughened in a standardized manner and polished with one of three polishing systems (n=20/group): Sof-Lex XT discs (SOFLEX; three-step (medium-superfine); 3M ESPE), VITA Polishing Set Clinical (VITA; two-step; VITA Zahnfabrik), or KENDA Unicus (KENDA; one-step; KENDA Dental). Surface roughness (Ra; μm) was measured with a profilometer and microhardness (Vickers; VHN) with a surface hardness indentation device. Ra and VHN were measured immediately after polishing and after six months storage (tap water, 37°C) including monthly artificial toothbrushing (500 cycles/month, toothpaste RDA ~70). Ra- and VHN-values were analysed with nonparametric ANOVA followed by Wilcoxon rank sum tests (α=0.05). Results: For Lava Ultimate, Ra (mean [standard deviation] before/after storage) remained the same when polished with SOFLEX (0.18 [0.09]/0.19 [0.10]; p=0.18), increased significantly with VITA (1.10 [0.44]/1.27 [0.39]; p=0.0001), and decreased significantly with KENDA (0.35 [0.07]/0.33 [0.08]; p=0.03). VHN (mean [standard deviation] before/after storage) decreased significantly regardless of polishing system (SOFLEX: 134.1 [5.6]/116.4 [3.6], VITA: 138.2 [10.5]/115.4 [5.9], KENDA: 135.1 [6.2]/116.7 [6.3]; all p<0.0001). For VITA ENAMIC, Ra (mean [standard deviation] before/after storage) increased significantly when polished with SOFLEX (0.37 [0.18]/0.41 [0.14]; p=0.01) and remained the same with VITA (1.32 [0.37]/1.31 [0.40]; p=0.58) and with KENDA (0.81 [0.35]/0.78 [0.32]; p=0.21). VHN (mean [standard deviation] before/after storage) remained the same regardless of polishing system (SOFLEX: 284.9 [24.6]/282.4 [31.8], VITA: 284.6 [28.5]/276.4 [25.8], KENDA: 292.6 [26.9]/282.9 [24.3]; p=0.42-1.00). Conclusion: Surface roughness and microhardness of Lava Ultimate was more affected by storage and artificial toothbrushing than was VITA ENAMIC.
Resumo:
En este proyecto se analizan las características y el ciclo de diseño asociado al entorno de CAD IspLEVER, de Lattice Semiconductor, con la finalidad de evaluar su adecuación a la docencia relacionada con la ingeniería de sistemas digitales cableados. En base a este estudio se realiza una guía del manejo de las diferentes herramientas que se integran en el entorno. Además, se realiza la caracterización de una serie de familias de dispositivos del fabricante Lattice Semiconductor que pudiera servir de apoyo a la hora de elegir un dispositivo de este fabricante para la realización de un determinado diseño. Para dar comienzo a la realización del estudio del entorno y de las herramientas que integra IspLEVER, se procedió a la familiarización con el marco de trabajo. Esta familiarización se realizó, en un principio, a través de la lectura de la documentación ofrecida por el fabricante en su página web, http://www.latticesemi.com. Tras esta lectura, que sirvió para tener una primera visión de las características de la herramienta, se procedió a la descarga del paquete de instalación; el fabricante ofrece una versión de evaluación que expira a los 12 meses. Una vez descargado, se instaló y para terminar con los preparativos, se pasó el procedimiento de obtención de la licencia. Con ello se consiguió tener el software preparado para su utilización. A continuación se emplearon horas de trabajo para, sin documentación alguna, tratar de crear diseños; con este trabajo se pretendía detectar lo intuitivo que resulta el entorno cuando se tienen conocimientos de herramientas de CAD electrónico. Tras esta primera toma de contacto con el entorno real, se procedió al estudio de las diferentes opciones que ofrece para la realización de diseños, ya sean lógicos o físicos. Además del estudio de todas las posibilidades que ofrece el entorno, el trabajo se focalizó en la detección y comparación de las distintas opciones que ofrece para realizar una misma tarea, como ocurre con la asignación de pines o con la revisión de los resultados de una simulación, entre otras. Entrelazado con el estudio de las opciones que ofrece el entorno, se realizó el estudio de las distintas herramientas de trabajo integradas en el mismo. Una vez estudiado el entorno y las herramientas, se procedió a la realización del tutorial. Se capturaron todas las imágenes que se consideraron apropiadas para que al alumno le resultase cómodo y fácil seguir todas las indicaciones que el tutorial ofrece, para la realización de un ciclo de diseño lógico completo. Tras la realización del tutorial, se procedió a revisar la amplia documentación que el fabricante ofrece de cada una de las distintas familias de dispositivos que fabrica. El fin de esta revisión no fue otro que realizar una caracterización de las distintas familias, que pudiera servir de apoyo a la hora de elegir un dispositivo de este fabricante para la realización de un determinado diseño. Este estudio de las familias de dispositivos del fabricante, también se realizó para detectar qué familia de dispositivos era la más idónea para incluir uno de sus miembros en una hipotética placa de prototipado, para la realización de prácticas de laboratorio. ABSTRACT. This project consists in the analysis of the characteristics and the design cycle associated with the IspLEVER environment of CAD, by Lattice Semiconductor. The objective of that analysis is to evaluate their suitability for teaching engineering related to wired digital systems. Based on this analysis a guide was made for managing the different tools that are integrated into the environment. In addition, the characterization of several families by the manufacturer Lattice Semiconductor was made, with the objective that it could be used to support the choice of a Lattice’s device to perform a certain design. To start the IspLEVER environment and tools study, I began with a familiarization with the environment. This familiarization consisted in a study of the manufacturer documentation offered in their web page, http://www.latticesemi.com. After that, I had a general view about the characteristics of the environment and environment tools. Then I continued downloading the installation package. The manufacturer offers an evaluation version that expires in the period of one year. After that download, the environment was installed. Finally, the licensing procedure was followed to finish with the preparations. Then, the software was prepared for its utilization. Following, several work hours were wasted without documentation, trying to create designs. This work has been to identify how intuitive the environment is when you have knowledge of electronic CAD tools. After this first point of contact with the real environment, I proceeded to study different offered options, by the manufacturer, for the realization of either logical or physical designs. In addition to studying all the possibilities offered by the environment, the work is focused on the detection and comparison of the various options offered to perform the same task, as with the pin assignment or reviewing the results of a simulation… At the same time, the environment tools were studied. At this point, I began creating the tutorial. I captured all the figures that I consider important to make it easy to the students. The tutorial contains a complete logical design cycle. When the tutorial was finished, I started to review the manufacturer documentation about each devices family. The purpose of this review was to characterize the different families to support the device selection in future designs. Another purpose of that characterization was focused on the detection of the best family to include one of its members in a prototyping board for conducting laboratory practices.
Resumo:
This paper suggests a new strategy to develop CAD applications taking into account some of the most interesting proposals which have recently appeared in the technology development arena. Programming languages, operating systems, user devices, software architecture, user interfaces and user experience are among the elements which are considered for a new development framework. This strategy considers the organizational and architectural aspects of the CAD application together with the development framework. The architectural and organizational aspects are based on the programmed design concept, which can be implemented by means of a three-level software architecture. These levels are the conceptual level based on a declarative language, the mathematical level based on the geometric formulation of the product model and the visual level based on the polyhedral representation of the model as required by the graphic card. The development framework which has been considered is Windows 8. This operating system offers three development environments, one for web pplications (HTML5 + CSS3 + JavaScript), and other for native applications C/C++) and of course yet another for .NET applications (C#, VB, F#, etc.). The use rinterface and user experience for non-web application is described ith XAML (a well known declarative XML language) and the 3D API for games and design applications is DirectX. Additionally, Windows 8 facilitates the use of hybrid solutions, in which native and managed code can interoperate easily. Some of the most remarkable advantages of this strategy are the possibility of targeting both desktop and touch screen devices with the same development framework, the usage of several programming paradigms to apply the most appropriate language to each domain and the multilevel segmentation of developers and designers to facilitate the implementation of an open network of collaborators.
Resumo:
Hardware/Software partitioning (HSP) is a key task for embedded system co-design. The main goal of this task is to decide which components of an application are to be executed in a general purpose processor (software) and which ones, on a specific hardware, taking into account a set of restrictions expressed by metrics. In last years, several approaches have been proposed for solving the HSP problem, directed by metaheuristic algorithms. However, due to diversity of models and metrics used, the choice of the best suited algorithm is an open problem yet. This article presents the results of applying a fuzzy approach to the HSP problem. This approach is more flexible than many others due to the fact that it is possible to accept quite good solutions or to reject other ones which do not seem good. In this work we compare six metaheuristic algorithms: Random Search, Tabu Search, Simulated Annealing, Hill Climbing, Genetic Algorithm and Evolutionary Strategy. The presented model is aimed to simultaneously minimize the hardware area and the execution time. The obtained results show that Restart Hill Climbing is the best performing algorithm in most cases.
Resumo:
Commercial off-the-shelf microprocessors are the core of low-cost embedded systems due to their programmability and cost-effectiveness. Recent advances in electronic technologies have allowed remarkable improvements in their performance. However, they have also made microprocessors more susceptible to transient faults induced by radiation. These non-destructive events (soft errors), may cause a microprocessor to produce a wrong computation result or lose control of a system with catastrophic consequences. Therefore, soft error mitigation has become a compulsory requirement for an increasing number of applications, which operate from the space to the ground level. In this context, this paper uses the concept of selective hardening, which is aimed to design reduced-overhead and flexible mitigation techniques. Following this concept, a novel flexible version of the software-based fault recovery technique known as SWIFT-R is proposed. Our approach makes possible to select different registers subsets from the microprocessor register file to be protected on software. Thus, design space is enriched with a wide spectrum of new partially protected versions, which offer more flexibility to designers. This permits to find the best trade-offs between performance, code size, and fault coverage. Three case studies have been developed to show the applicability and flexibility of the proposal.
Resumo:
The design of fault tolerant systems is gaining importance in large domains of embedded applications where design constrains are as important as reliability. New software techniques, based on selective application of redundancy, have shown remarkable fault coverage with reduced costs and overheads. However, the large number of different solutions provided by these techniques, and the costly process to assess their reliability, make the design space exploration a very difficult and time-consuming task. This paper proposes the integration of a multi-objective optimization tool with a software hardening environment to perform an automatic design space exploration in the search for the best trade-offs between reliability, cost, and performance. The first tool is commanded by a genetic algorithm which can simultaneously fulfill many design goals thanks to the use of the NSGA-II multi-objective algorithm. The second is a compiler-based infrastructure that automatically produces selective protected (hardened) versions of the software and generates accurate overhead reports and fault coverage estimations. The advantages of our proposal are illustrated by means of a complex and detailed case study involving a typical embedded application, the AES (Advanced Encryption Standard).
Resumo:
The past few decades have brought many changes to the dental practice and the technology has become ready available. The result of a satisfactory rehabilitation treatment basically depends on the balance between biological and mechanical factors. The marginal adaptation of crowns and prosthetic structures is vital factor for long-term success. The development of CAD / CAM technology in the manufacture of dental prostheses revolutionized dentistry, this technology is capable of generating a virtual model from the direct digital scanning from the mouth, casts or impressions. It allows the planning and design of the structure in a computered software. The virtual projects are obtained with high precision and a significant reduction in clinical and laboratory time. Thus, the present study (Chapters 1, 2 and 3) computed microtomography was used to evaluate, different materials, different CAD/CAM systems, different ways of obtaining virtual model (with direct or indirect scanning), and in addition, also aims to evaluate the influence of cementing agent in the final adaptation of crowns and copings obtained by CAD / CAM. Furthermore, this study (Chapter 4, 5 and 6) also aims to evaluate significant differences in vertical and horizontal misfits in abutment-free frameworks on external hexagon implants (HE) using full castable UCLAs, castable UCLAs with cobalt-chromium pre-machined bases and obtained by CAD / CAM with CoCr or Zirconia by different scanning and milling systems. For this, the scanning electron microscopy and interferometry were used. It was concluded that the CAD / CAM technology is capable to produce restorations, copings and screw-retained implant-supported frameworks in different materials and systems offering satisfactory results of marginal accuracy, with significative reduction in clinical and laboratory time.
Resumo:
This research paper presents the work on feature recognition, tool path data generation and integration with STEP-NC (AP-238 format) for features having Free form / Irregular Contoured Surface(s) (FICS). Initially, the FICS features are modelled / imported in UG CAD package and a closeness index is generated. This is done by comparing the FICS features with basic B-Splines / Bezier curves / surfaces. Then blending functions are caculated by adopting convolution theorem. Based on the blending functions, contour offsett tool paths are generated and simulated for 5 axis milling environment. Finally, the tool path (CL) data is integrated with STEP-NC (AP-238) format. The tool path algorithm and STEP- NC data is tested with various industrial parts through an automated UFUNC plugin.
Resumo:
Conventional chromatographic columns are packed with porous beads by the universally employed slurry-packing method. The lack of precise control of the particle size distribution, shape and position inside the column have dramatic effects on the separation efficiency. In the first part the thesis an ordered, three-dimensional, pillar-array structure was designed by a CAD software. Several columns, characterized by different fluid distributors and bed length, were produced by a stereolithographic 3D printer and compared in terms of pressure drop and height equivalent to a theroretical plate (HETP). To prevent the release of unwanted substances and to provide a surface for immobilizing a ligand, pillars were coated with one or more of the following materials: titanium dioxide, nanofibrillated cellulose (NFC) and polystyrene. The external NFC layer was functionalized with Cibacron Blue and the dynamic binding capacity of the column was measured by performing three chromatographic cycles, using bovine serum albumin (BSA) as target molecule. The second part of the thesis deals with Covid-19 pandemic related research activities. In early 2020, due to the pandemic outbreak, surgical face masks became an essential non-pharmaceutical intervention to limit the spread. To address the consequent shortage and to support the reconversion of the Italian industry, in late March 2020 a multidisciplinary group of the University of Bologna created the first Italian laboratory able to perform all the tests required for the evaluation and certification of surgical masks. More than 1200 tests were performed on about 350 prototypes, according to the standard EN 14683:2019. The results were analyzed to define the best material properties and masks composition for the production of masks with excellent efficiency. To optimize the usage of surgical masks and to reduce their environmental burden, the variation of their performance over time of usage were investigated as to determine the maximum lifetime.
Resumo:
The development and maintenance of the sealing of the root canal system is the key to the success of root canal treatment. The resin-based adhesive material has the potential to reduce the microleakage of the root canal because of its adhesive properties and penetration into dentinal walls. Moreover, the irrigation protocols may have an influence on the adhesiveness of resin-based sealers to root dentin. The objective of the present study was to evaluate the effect of different irrigant protocols on coronal bacterial microleakage of gutta-percha/AH Plus and Resilon/Real Seal Self-etch systems. One hundred ninety pre-molars were used. The teeth were divided into 18 experimental groups according to the irrigation protocols and filling materials used. The protocols used were: distilled water; sodium hypochlorite (NaOCl)+eDTA; NaOCl+H3PO4; NaOCl+eDTA+chlorhexidine (CHX); NaOCl+H3PO4+CHX; CHX+eDTA; CHX+ H3PO4; CHX+eDTA+CHX and CHX+H3PO4+CHX. Gutta-percha/AH Plus or Resilon/Real Seal Se were used as root-filling materials. The coronal microleakage was evaluated for 90 days against Enterococcus faecalis. Data were statistically analyzed using Kaplan-Meier survival test, Kruskal-Wallis and Mann-Whitney tests. No significant difference was verified in the groups using chlorhexidine or sodium hypochlorite during the chemo-mechanical preparation followed by eDTA or phosphoric acid for smear layer removal. The same results were found for filling materials. However, the statistical analyses revealed that a final flush with 2% chlorhexidine reduced significantly the coronal microleakage. A final flush with 2% chlorhexidine after smear layer removal reduces coronal microleakage of teeth filled with gutta-percha/AH Plus or Resilon/Real Seal SE.
Resumo:
To evaluate the effectiveness of Reciproc for the removal of cultivable bacteria and endotoxins from root canals in comparison with multifile rotary systems. The root canals of forty human single-rooted mandibular pre-molars were contaminated with an Escherichia coli suspension for 21 days and randomly assigned to four groups according to the instrumentation system: GI - Reciproc (VDW); GII - Mtwo (VDW); GIII - ProTaper Universal (Dentsply Maillefer); and GIV -FKG Race(™) (FKG Dentaire) (n = 10 per group). Bacterial and endotoxin samples were taken with a sterile/apyrogenic paper point before (s1) and after instrumentation (s2). Culture techniques determined the colony-forming units (CFU) and the Limulus Amebocyte Lysate assay was used for endotoxin quantification. Results were submitted to paired t-test and anova. At s1, bacteria and endotoxins were recovered in 100% of the root canals investigated (40/40). After instrumentation, all systems were associated with a highly significant reduction of the bacterial load and endotoxin levels, respectively: GI - Reciproc (99.34% and 91.69%); GII - Mtwo (99.86% and 83.11%); GIII - ProTaper (99.93% and 78.56%) and GIV - FKG Race(™) (99.99% and 82.52%) (P < 0.001). No statistical difference were found amongst the instrumentation systems regarding bacteria and endotoxin removal (P > 0.01). The reciprocating single file, Reciproc, was as effective as the multifile rotary systems for the removal of bacteria and endotoxins from root canals.