184 resultados para CYTOKINESIS
Resumo:
The increase of mortality from cancer brought urgency in identification and validation of predictive markers of risk and therefore early diagnosis. There is evidence that cytogenetic biomarkers are positively correlated with risk of cancer, and this is validated by studies of cohort and case-control. Cytokinesis-blocked micronucleus (CBMN) assay is used extensively in molecular epidemiology, and can be considered as a “cytome” assay covering cell proliferation, apoptosis, necrosis and chromosomal changes. The chromosomal alterations most reported and studied by the CBMN are: micronucleus (MN), nucleoplasmic bridges (NPB) and nuclear buds (NBUDS). The use of the MN assay in biomonitoring studies had a large increase in the last 15 years and international projects such as the HUMN have helped to increase the applicability and reliability of these tests.
Resumo:
Mob1 is a component of both the mitotic exit network and Hippo pathway, being required for cytokinesis, control of cell proliferation and apoptosis. Cell division accuracy is crucial in maintaining cell ploidy and genomic stability and relies on the correct establishment of the cell division axis, which is under the control of the cell's environment and its intrinsic polarity. The ciliate Tetrahymena thermophila possesses a permanent anterior-posterior axis, left-right asymmetry and divides symmetrically. These unique features of Tetrahymena prompted us to investigate the role of Tetrahymena Mob1. Unexpectedly, we found that Mob1 accumulated in basal bodies at the posterior pole of the cell, and is the first molecular polarity marker so far described in Tetrahymena. In addition, Mob1 depletion caused the abnormal establishment of the cell division plane, providing clear evidence that Mob1 is important for its definition. Furthermore, cytokinesis was arrested and ciliogenesis delayed in Tetrahymena cells depleted of Mob1. This is the first evidence for an involvement of Mob1 in cilia biology. In conclusion, we show that Mob1 is an important cell polarity marker that is crucial for correct division plane placement, for cytokinesis completion and for normal cilia growth rates.
Resumo:
The International Agency for Research on Cancer classified formaldehyde as carcinogenic to humans because there is “sufficient epidemiological evidence that it causes nasopharyngeal cancer in humans”. Genes involved in DNA repair and maintenance of genome integrity are critically involved in protecting against mutations that lead to cancer and/or inherited genetic disease. Association studies have recently provided evidence for a link between DNA repair polymorphisms and micronucleus (MN) induction. We used the cytokinesis-block micronucleus (CBMN assay) in peripheral lymphocytes and MN test in buccal cells to investigate the effects of XRCC3 Thr241Met, ADH5 Val309Ile, and Asp353Glu polymorphisms on the frequency of genotoxicity biomarkers in individuals occupationally exposed to formaldehyde (n = 54) and unexposed workers (n = 82). XRCC3 participates in DNA double-strand break/recombination repair, while ADH5 is an important component of cellular metabolism for the elimination of formaldehyde. Exposed workers had significantly higher frequencies (P < 0.01) than controls for all genotoxicity biomarkers evaluated in this study. Moreover, there were significant associations between XRCC3 genotypes and nuclear buds, namely XRCC3 Met/Met (OR = 3.975, CI 1.053–14.998, P = 0.042) and XRCC3 Thr/Met (OR = 5.632, CI 1.673–18.961, P = 0.005) in comparison with XRCC3 Thr/Thr. ADH5 polymorphisms did not show significant effects. This study highlights the importance of integrating genotoxicity biomarkers and genetic polymorphisms in human biomonitoring studies.
Resumo:
A replicate evaluation of increased micronucleus (MN) frequencies in peripheral lymphocytes of workers occupationally exposed to formaldehyde (FA) was undertaken to verify the observed effect and to determine scoring variability. May–Grünwald–Giemsa-stained slides were obtained from a previously performed cytokinesis-block micronucleus test (CBMNT) with 56 workers in anatomy and pathology laboratories and 85 controls. The first evaluation by one scorer (scorer 1) had led to a highly significant difference between workers and controls (3.96 vs 0.81 MN per 1000 cells). The slides were coded before re-evaluation and the code was broken after the complete re-evaluation of the study. A total of 1000 binucleated cells (BNC) were analysed per subject and the frequency of MN (in ‰) was determined. Slides were distributed equally and randomly between two scorers, so that the scorers had no knowledge of the exposure status. Scorer 2 (32 exposed, 36 controls) measured increased MN frequencies in exposed workers (9.88 vs 6.81). Statistical analysis with the two-sample Wilcoxon test indicated that this difference was not significant (p = 0.17). Scorer 3 (20 exposed, 46 controls) obtained a similar result, but slightly higher values for the comparison of exposed and controls (19.0 vs 12.89; p = 0.089). Combining the results of the two scorers (13.38 vs 10.22), a significant difference between exposed and controls (p = 0.028) was obtained when the stratified Wilcoxon test with the scorers as strata was applied. Interestingly, the re-evaluation of the slides led to clearly higher MN frequencies for exposed and controls compared with the first evaluation. Bland–Altman plots indicated that the agreement between the measurements of the different scorers was very poor, as shown by mean differences of 5.9 between scorer 1 and scorer 2 and 13.0 between scorer 1 and scorer 3. Calculation of the intra-class correlation coefficient (ICC) revealed that all scorer comparisons in this study were far from acceptable for the reliability of this assay. Possible implications for the use of the CBMNT in human biomonitoring studies are discussed.
Resumo:
Formaldehyde (FA) ranks 25th in the overall U.S. chemical production, with more than 5 million tons produced each year. Given its economic importance and widespread use, many people are exposed to FA occupationally. Recently, based on the correlation with nasopharyngeal cancer in humans, the International Agency for Research on Cancer (IARC) confirmed the classification of FA as a Group I substance. Considering the epidemiological evidence of a potential association with leukemia, the IARC has concluded that FA can cause this lymphoproliferative disorder. Our group has developed a method to assess the exposure and genotoxicity effects of FA in two different occupational settings, namely FAbased resins production and pathology and anatomy laboratories. For exposure assessment we applied simultaneously two different techniques of air monitoring: NIOSH Method 2541 and Photo Ionization Detection Equipment with simultaneously video recording. Genotoxicity effects were measured by cytokinesis-blocked micronucleus assay in peripheral blood lymphocytes and by micronucleus test in exfoliated oral cavity epithelial cells, both considered target cells. The two exposure assessment techniques show that in the two occupational settings peak exposures are still occurring. There was a statistical significant increase in the micronucleus mean of epithelial cells and peripheral lymphocytes of exposed individuals compared with controls. In conclusion, the exposure and genotoxicity effects assessment methodologies developed by us allowed to determine that these two occupational settings promote exposure to high peak FA concentrations and an increase in the micronucleus mean of exposed workers. Moreover, the developed techniques showed promising results and could be used to confirm and extend the results obtained by the analytical techniques currently available.
Resumo:
The human eukaryotic release factor 3a (eRF3a), encoded by the G1 to S phase transition 1 gene (GSPT1; alias eRF3a), is upregulated in various human cancers. GSPT1 contains a GGCn polymorphism in exon 1, encoding a polyglycine expansion in the N-terminal of the protein. The longer allele, GGC12, was previously shown to be associated to cancer. The GGC12 allele was present in 2.2% of colorectal cancer patients but was absent in Crohn disease patients and in the control group. Real-time quantitative RT-PCR analysis showed that the GGC12 allele was present at up to 10-fold higher transcription levels than the GGC10 allele (P < 0.001). No GSPT1 amplifications were detected, and there was no correlation between the length of the alleles and methylation levels of the CpG sites inside the GGC expansion. Using flow cytometry, we compared the levels of apoptosis and proliferation rates between cell lines with different genotypes, but detected no significant differences. Finally, we used a cytokinesis-block micronucleus assay to evaluate the frequency of micronuclei in the same cell lines. Cell lines with the longer alleles had higher frequencies of micronuclei in binucleated cells, which is probably a result of defects in mitotic spindle formation. Altogether, these findings indicate that GSPT1 should be considered a potential proto-oncogene.
Resumo:
Several antineoplastic drugs have been classified as carcinogens by the International Agency for Research on Cancer (IARC) on the basis of epidemiological findings, animal carcinogenicity data, and outcomes of in vitro genotoxicity studies. 5-Fluorouracil (5-FU), which is easily absorbed through the skin, is the most frequently used antineoplastic agent in Portuguese hospitals and therefore may be used as an indicator of surface contamination. The aims of the present investigation were to (1) examine surface contamination by 5-FU and (2) assess the genotoxic risk using cytokinesis-block micronucleus assay in nurses from two Portuguese hospitals. The study consisted of 2 groups: 27 nurses occupationally exposed to cytostatic agents (cases) and 111 unexposed individuals (controls). Peripheral blood lymphocytes (PBL) were collected in order to measure micronuclei (MN) in both groups. Hospital B showed a higher numerical level of contamination but not significantly different from Hospital A. However; Hospital A presented the highest value of contamination and also a higher proportion of contaminated samples. The mean frequency of MN was significantly higher in exposed workers compared with controls. No significant differences were found among MN levels between the two hospitals. The analysis of confounding factors showed that age is a significant variable in MN frequency occurrence. Data suggest that there is a potential genotoxic damage related to occupational exposure to cytostatic drugs in oncology nurses.
Resumo:
The use of cytostatics drugs in anticancer therapy is increasing. Health care workers can be occupationally exposed to these drugs classified as carcinogenic, mutagenic or teratogenic. Workers may be exposed to this drug, being in the hospital settings the main focus dwelled upon the pharmacy, and nursing personnel. Although the potential therapeutic benefits of hazardous drugs outweigh the risks of side effects for ill patients, exposed health care workers can have the same side effects with no therapeutic benefit. The exposure to these substances is epidemiologically linked to cancer and nuclear changes detected by the cytokinesis-block micronucleus test (CBMN). This method is extensively used in molecular epidemiology, since it determines several biomarkers of genotoxicity, such as micronuclei (MN), which are biomarkers of chromosomes breakage or loss, nucleoplasmic bridges (NPB), common biomarkers of chromosome rearrangement, poor repair and/or telomeres fusion, and nuclear buds (NBUD), biomarkers of elimination of amplified DNA.
Resumo:
Exposure in a hospital setting is normally due to the use of several antineoplastic drugs simultaneously. Nevertheless, the effects of such mixtures at the cell level and on human health in general are unpredictable and unique due to differences in practice of hospital oncology departments, in the number of patients, protection devices available, and the experience and safety procedures of medical staff. Health care workers who prepare or administer hazardous drugs or who work in areas where these drugs are used may be exposed to these agents in the air, on work surfaces, contaminated clothing, medical equipment, patient excreta, and other surfaces. These workers include specially pharmacists, pharmacy technicians, and nursing personnel. Exposures may occur through inhalation resulting from aerosolization of powder or liquid during reconstitution and spillage taking place while preparing or administering to patients, through Cytokinesis-block micronucleus test (CBMN) is extensively used in biomonitoring, since it determines several biomarkers of genotoxicity, such as micronuclei (MN), which are biomarkers of chromosomes breakage or loss, nucleoplasmic bridges (NPB), common biomarkers of chromosome rearrangement, poor repair and/or telomeres fusion, and nuclear buds (NBUD), biomarkers of elimination of amplified DNA.
Resumo:
Antioneoplastic drugs are widely used in treatment of cancer, and several studies suggest acute and long-term effects associated to antineoplastic drug exposures, namely associating workplace exposure with health effects. Cytokinesis blocked micronucleus (CBMN) assay is one promising short-term genotoxicity assays for human risk assessment and their combination is recommended to monitor populations chronically exposed to genotoxic agents. The aim of this investigation is the genotoxicity assessment in different professionals that handle cytostatics drugs. This research is case-control blinded study constituted by 46 non-exposed subjects and 44 workers that handle antineoplastic drugs, such as pharmacists, pharmacy technicians, and nurses. It was found statistically significant increases in the genotoxicity biomarkers in exposed comparising with controls (p<0.05). The findings address the need for regular biomonitoring of personnel occupationally exposed to these drugs, confirming to an enhanced health risk assessment.
Resumo:
The impact of metals (Cd, Cr, Cu and Zn) on growth, cell volume and cell division of the freshwateralga Pseudokirchneriella subcapitata exposed over a period of 72 h was investigated. The algal cells wereexposed to three nominal concentrations of each metal: low (closed to 72 h-EC10values), intermediate(closed to 72 h-EC50values) and high (upper than 72 h-EC90values). The exposure to low metal concen-trations resulted in a decrease of cell volume. On the contrary, for the highest metal concentrations anincrease of cell volume was observed; this effect was particularly notorious for Cd and less pronouncedfor Zn. Two behaviours were found when algal cells were exposed to intermediate concentrations ofmetals: Cu(II) and Cr(VI) induced a reduction of cell volume, while Cd(II) and Zn(II) provoked an oppositeeffect. The simultaneous nucleus staining and cell image analysis, allowed distinguishing three phases inP. subcapitata cell cycle: growth of mother cell; cell division, which includes two divisions of the nucleus;and, release of four autospores. The exposure of P. subcapitata cells to the highest metal concentrationsresulted in the arrest of cell growth before the first nucleus division [for Cr(VI) and Cu(II)] or after thesecond nucleus division but before the cytokinesis (release of autospores) when exposed to Cd(II). Thedifferent impact of metals on algal cell volume and cell-cycle progression, suggests that different toxic-ity mechanisms underlie the action of different metals studied. The simultaneous nucleus staining andcell image analysis, used in the present work, can be a useful tool in the analysis of the toxicity of thepollutants, in P. subcapitata, and help in the elucidation of their different modes of action.
Resumo:
Toxic effects of ultraviolet (UV) radiation on skin include protein and lipid oxidation, and DNA damage. The latter is known to play a major role in photocarcinogenesis and photoaging. Many plant extracts and natural compounds are emerging as photoprotective agents. Castanea sativa leaf extract is able to scavenge several reactive species that have been associated to UV-induced oxidative stress. The aim of this work was to analyze the protective effect of C. sativa extract (ECS) at different concentrations (0.001, 0.01, 0.05 and 0.1 μg/mL) against the UV mediated-DNA damage in a human keratinocyte cell line (HaCaT). For this purpose, the cytokinesis-block micronucleus assay was used. Elucidation of the protective mechanism was undertaken regarding UV absorption, influence on 1O2 mediated effects or NRF2 activation. ECS presented a concentration-dependent protective effect against UV-mediated DNA damage in HaCaT cells. The maximum protection afforded (66.4%) was achieved with the concentration of 0.1 μg/mL. This effect was found to be related to a direct antioxidant effect (involving 1O2) rather than activation of the endogenous antioxidant response coordinated by NRF2. Electrochemical studies showed that the good antioxidant capacity of the ECS can be ascribed to the presence of a pool of different phenolic antioxidants. No genotoxic or phototoxic effects were observed after incubation of HaCaT cells with ECS (up to 0.1 μg/mL). Taken together these results reinforce the putative application of this plant extract in the prevention/minimization of UV deleterious effects on skin.
Resumo:
Dissertation presented to obtain the Ph.D degree in Molecular Medicine
Resumo:
The mechanisms responsible for cytokinesis and its coordination with other events of the cell cycle are poorly understood. Genetic studies of cytokinesis in fission yeast are one useful approach to this problem. A number of conditional mutants of fission yeast that show defects in the formation of the septum of cytokinesis have been identified. Cloning of the genes affected in these mutants has begun to shed light upon the elements required to direct the construction of the division septum and also upon how the initiation of septum formation may be coordinated with mitosis.
Resumo:
For cell morphogenesis, the cell must establish distinct spatial domains at specified locations at the cell surface. Here, we review the molecular mechanisms of cell polarity in the fission yeast Schizosaccharomyces pombe. These are simple rod-shaped cells that form cortical domains at cell tips for cell growth and at the cell middle for cytokinesis. In both cases, microtubule-based systems help to shape the cell by breaking symmetry, providing endogenous spatial cues to position these sites. The plus ends of dynamic microtubules deliver polarity factors to the cell tips, leading to local activation of the GTPase cdc42p and the actin assembly machinery. Microtubule bundles contribute to positioning the division plane through the nucleus and the cytokinesis factor mid1p. Recent advances illustrate how the spatial and temporal regulation of cell polarization integrates many elements, including historical landmarks, positive and negative controls, and competition between pathways.