955 resultados para CYCLIC VOLTAMMETRY


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Glassy carbon electrodes (GCE) were modified with poly(glutamic acid) acid films prepared using three different procedures: glutamic acid monomer electropolymerization (MONO), evaporation of poly(glutamic acid) (PAG) and evaporation of a mixture of poly(glutamic acid)/glutaraldehyde (PAG/GLU). All three films showed good adherence to the electrode surface. The performance of the modified GCE was investigated by cyclic voltammetry and differential pulse voltammetry, and the films were characterized by atomic force microscopy (AFM) and electrochemical impedance spectroscopy (EIS). The three poly(glutamic acid) modified GCEs were tested using the electrochemical oxidation of ascorbic acid and a decrease of the overpotential and the improvement of the oxidation peak current was observed. The PAG modified electrode surfaces gave the best results. AFM morphological images showed a polymeric network film formed by well-defined nanofibres that may undergo extensive swelling in solution, allowing an easier electron transfer and higher oxidation peaks. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hydroxychloroquine (HCQ) is a halogenated aminoquinoline that presents wide biological activity, often being used as an antimalarial drug. The electrochemical reduction of HCQ was investigated by cyclic voltammetry and chronoamperometry using glassy carbon electrodes. By cyclic voltammetry, in acid medium, only the cathodic peak was observed. The electrochemical behavior of this peak is dependent on pH and the electrodic process occurs through an ErCi mechanism. The electron number (le) consumed in the reduction of HCQ was obtained by chronoamperometry. A method for the electrochemical determination of HCQ in pharmaceutical tablets was developed using differential pulse voltammetry. The detection limit reached was 11.2 mug ml(-1) of HCQ with a relative standard deviation of 0.46%. A spectrophotometric study of HCQ has been also carried out utilizing a band at 343 nm. The obtained detection limit and the relative standard deviation were 0.1 mug ml(-1) and 0.36%, respectively. The electrochemical methods are sufficiently accurate and precise to be applied for HCQ determination, in laboratorial routine, which can be used to determine the drug at low level. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The presence of trace basic organonitrogen compounds such as quinoline and pyridine in derivative petroleum fuels plays an important role in maintaining the engines of vehicles. However, these substances can contaminate the environment and so must be controlled because most of them are potentially carcinogenic and mutagenic. For these reasons, a reliable and sensitive method was developed for the determination of basic nitrogen compounds in fuel samples such as gasoline and diesel. This method utilizes preconcentration on an ion-exchange resin (Amberlyte IR - 120 H) followed by differential pulse voltammetry (DPV) on a glassy carbon electrode. The electrochemical behavior of quinoline and pyridine as studied by cyclic voltammetry (CV) suggests that their reduction occurs via a reversible electron transfer followed by an irreversible chemical reaction. Very well resolved diffusion-controlled voltammetric peaks were obtained in dimethylformamide (DMF) with tetrabutylammonium tetrafluoroborate (TBAF(4) 0.1 mol L-1) for quinoline (-1.95 V) and pyridine (-2.52 V) vs. Ag vertical bar AgCl vertical bar KClsat reference electrode. The proposed DPV method displayed a good linear response from 0.10 to 300 mg L-1 and a limit of detection (LOD) of 5.05 and 0.25 mu g L-1 for quinoline and pyridine, respectively. Using the method of standard additions, the simultaneous determination of quinoline and pyridine in gasoline samples yielded 25.0 +/- 0.3 and 33.0 +/- 0.7 mg L-1 and in diesel samples yielded 80.3 +/- 0.2 and 131 +/- 0.4 mg L-1, respectively. Spike recoveries were 94.4 +/- 0.3% and 10 +/- 0.5% for quinoline and pyridine, respectively, in the fuel determinations. This proposed method was also compared with UV-vis spectrophotometric measurements. Results obtained for the two methods agreed well based on F and t student's tests.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The presence of trace neutral organonitrogen compounds as carbazole and indole in derivative petroleum fuels plays an important role in the car's engine maintenance. In addition, these substances contribute to the environmental contamination and their control is necessary because most of them are potentially carcinogenic and mutagenic. For those reasons, a reliable and sensitive method was proposed for the determination of neutral nitrogen compounds in fuel samples, such as gasoline and diesel using preconcentration with modified silica gel (Merck 70-230 mesh ASTM) followed by differential pulse voltammetry (DPV) technique on a glassy carbon electrode. The electrochemical behavior of carbazole and indole studied by cyclic voltammetry (CV) suggests that their reduction occurs via a reversible electron transfer followed by an irreversible chemical reaction. Very well resolved diffusion controlled voltammetric peaks were obtained in dimethylformamide (DMF) with tetrabutylammonium tetrafluoroborate (TBAF(4) 0.1 mol L-1) for indole (-2.27 V) and carbazole (-2.67 V) versus Ag vertical bar AgCl vertical bar KClsat reference electrode. The proposed DPV method showed a good linear response range from 0.10 to 300 mg L-1 and a limit of detection (L.O.D) of 7.48 and 2.66 mu g L-1 for indole and carbazole, respectively. The results showed that simultaneous determination of indole and carbazole presents in spiked gasoline samples were 15.8 +/- 0.3 and 64.6 +/- 0.9 mg L-1 and in spiked diesel samples were 9.29 +/- 1 and 142 +/- 1 mg L-1, respectively. The recovery was evaluated and the results shown the values of 88.9 +/- 0.4 and 90.2 +/- 0.8% for carbazole and indole in fuel determinations. The proposed method was also compared with UV-vis spectrophotometric measures and the results obtained for the two methods were in good agreement according to the F and t Student's tests. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tetradifon, a potentially carcinogenic and mutagenic pesticide, can contribute to environmental and human contamination when applied to green bell pepper crops. In this context, in this work, a reliable and sensitive method for determination of tetradifon in Brazilian green bell pepper samples involving a differential pulse voltammetry (DPV) technique on a glassy carbon electrode is proposed. The electrochemical behavior of tetradifon as followed by cyclic voltammetry (CV) suggests that its reduction occurs via an irreversible five–electron transfer vs. Ag|AgCl, KCl 3 M reference electrode. Very well–resolved diffusion controlled voltammetric peaks have been obtained in a supporting electrolyte solution composed of a mixture of 40% dimethylformamide (DMF), 30% methanol, and 30% NaOH 0.3 mol L−1 at −1.43, −1.57, −1.73, −1.88, and −2.05 V. The proposed DPV method has a good linear response in the 3.00 – 10.0 μmol L−1 range, with a limit of detection (L.O.D) of 0.756 μmol L−1 and 0.831 μmol L−1 in the absence and in the presence of the matrix, respectively. Moreover, improved L.O.D results (0.607 μmol L−1) have been achieved in the absence of DMF from the supporting electrolyte solution. Recovery has been evaluated in five commercial green bell pepper samples, and recovery percentages ranging from 91.0 to 109 have been obtained for tetradifon determinations. The proposed voltammetric method has also been tested for reproducibility, repeatability, and potential interferents, and the results obtained for these three analytical parameters are satisfactory for electroanalytical purposes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sugar is widely consumed worldwide and Brazil is the largest producer, consumer, and exporter of this product. To guarantee proper development and productivity of sugar cane crops, it is necessary to apply large quantities of agrochemicals, especially herbicides and pesticides. The herbicide tebuthiuron (TBH) prevents pre- and post-emergence of infesting weed in sugarcane cultures. Considering that it is important to ensure food safety for the population, this paper proposes a reliable method to analyse TBH in sugar matrixes (brown and crystal) using square wave voltammetry (SWV) and differential pulse voltammetry (DPV) at bare glassy carbon electrode and investigate the electrochemical behavior of this herbicide by cyclic voltammetry (CV). Our results suggest that TBH or the product of its reaction with a supporting electrolyte is oxidized through irreversible transfer of one electron between the analyte and the working electrode, at a potential close to +1.16 V vs. Ag |AgClsat in 0.10 mol L-1 KOH as supporting electrolyte solution. Both DPV and SWV are satisfactory for the quantitative analysis of the analyte. DPV is more sensitive and selective, with detection limits of 0.902, 0.815 and 0.578 mg kg-1, and quantification limits of 0.009, 0.010 and 0.008 mg kg-1 in the absence of the matrix and in the presence of crystal and brown sugar matrix, respectively. Repeatability lay between 0.53 and 13.8%, precision ranged between 4.14 and 15.0%, and recovery remained between 84.2 and 113% in the case of DPV conducted in the absence of matrix and in the presence of the crystal sugar matrix, respectively.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tetradifon, a potentially carcinogenic and mutagenic pesticide, can contribute to environmental and human contamination when applied to green bell pepper crops. In this context, in this work, a reliable and sensitive method for determination of tetradifon in Brazilian green bell pepper samples involving a differential pulse voltammetry (DPV) technique on a glassy carbon electrode is proposed. The electrochemical behavior of tetradifon as followed by cyclic voltammetry (CV) suggests that its reduction occurs via an irreversible five-electron transfer vs. Ag vertical bar AgCl, KCl 3 M reference electrode. Very well-resolved diffusion controlled voltammetric peaks have been obtained in a supporting electrolyte solution composed of a mixture of 40% dimethylformamide (DMF), 30% methanol, and 30% NaOH 0.3 mol L-1 at -1.43, -1.57, -1.73, -1.88, and -2.05 V. The proposed DPV method has a good linear response in the 3.00 - 10.0 mu mol L-1 range, with a limit of detection (L.O.D) of 0.756 mu mol L-1 and 0.831 mu mol L-1 in the absence and in the presence of the matrix, respectively. Moreover, improved L.O.D results (0.607 mu mol L-1) have been achieved in the absence of DMF from the supporting electrolyte solution. Recovery has been evaluated in five commercial green bell pepper samples, and recovery percentages ranging from 91.0 to 109 have been obtained for tetradifon determinations. The proposed voltammetric method has also been tested for reproducibility, repeatability, and potential interferents, and the results obtained for these three analytical parameters are satisfactory for electroanalytical purposes. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.024207jes] All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A finite difference method for simulating voltammograms of electrochemically driven enzyme catalysis is presented. The method enables any enzyme mechanism to be simulated. The finite difference equations can be represented as a matrix equation containing a nonlinear sparse matrix. This equation has been solved using the software package Mathematica. Our focus is on the use of cyclic voltammetry since this is the most commonly employed electrochemical method used to elucidate mechanisms. The use of cyclic voltammetry to obtain data from systems obeying Michaelis-Menten kinetics is discussed, and we then verify our observations on the Michaelis-Menten system using the finite difference simulation. Finally, we demonstrate how the method can be used to obtain mechanistic information on a real redox enzyme system, the complex bacterial molybdoenzyme xanthine dehydrogenase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mixed double-decker Eu\[Pc(15C5)4](TPP) (1) was obtained by base-catalysed tetramerisation of 4,5-dicyanobenzo-15-crown-5 using the half-sandwich complex Eu(TPP)(acac) (acac = acetylacetonate), generated in situ, as the template. For comparative studies, the mixed triple-decker complexes Eu2\[Pc(15C5)4](TPP)2 (2) and Eu2\[Pc(15C5)4]2(TPP) (3) were also synthesised by the raise-by-one-story method. These mixed ring sandwich complexes were characterised by various spectroscopic methods. Up to four one-electron oxidations and two one-electron reductions were revealed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). As shown by electronic absorption and infrared spectroscopy, supramolecular dimers (SM1 and SM3) were formed from the corresponding double-decker 1 and triple-decker 3 in the presence of potassium ions in MeOH/CHCl3.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electrochemical characteristics of a series of heteroleptic tris(phthalocyaninato) complexes with identical rare earths or mixed rare earths (Pc)M(OOPc)M(OOPc) [M = Eu...Lu, Y; H2Pc = unsubstituted phthalocyanine, H2(OOPc) = 3,4,12,13,21,22,30,31-octakis(octyloxy)phthalocyanine] and (Pc)Eu(OOPc)Er(OOPc) have been recorded and studied comparatively by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in CH2Cl2 containing 0.1 M tetrabutylammonium perchlorate (TBAP). Up to five quasi-reversible one-electron oxidations and four one-electron reductions have been revealed. The half-wave potentials of the first, second and fifth oxidations depend on the size of the metal center, but the fifth changes in the opposite direction to that of the first two. Moreover, the difference in redox potentials of the first oxidation and first reduction for (Pc)M(OOPc)M(OOPc), 0.85−0.98 V, also decreases linearly along with decreasing rare earth ion radius, clearly showing the rare earth ion size effect and indicating enhanced π−π interactions in the triple-deckers connected by smaller lanthanides. This order follows the red-shift seen in the lowest energy band of triple-decker compounds. The electronic differences between the lanthanides and yttrium are more apparent for triple-decker sandwich complexes than for the analogous double-deckers. By comparing triple-decker, double-decker and mononuclear [ZnII] complexes containing the OOPc ligand, the HOMO−LUMO gap has been shown to contract approximately linearly with the number of stacked phthalocyanine ligands.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electrochemistry of homoleptic substituted phthalocyaninato rare earth double-decker complexes M(TBPc)2 and M(OOPc)2 [M = Y, La...Lu except Pm; H2TBPc = 3(4),12(13),21(22),30(31)-tetra-tert-butylphthalocyanine, H2OOPc = 3,4,12,13,21,22,30,31-octakis(octyloxy)phthalocyanine] has been comparatively studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in CH2Cl2 containing 0.1 M tetra-n-butylammonium perchlorate (TBAP). Two quasi-reversible one-electron oxidations and three or four quasi-reversible one-electron reductions have been revealed for these neutral double-deckers of two series of substituted complexes, respectively. For comparison, unsubstituted bis(phthalocyaninato) rare earth analogues M(Pc)2 (M = Y, La...Lu except Pm; H2Pc = phthalocyanine) have also been electrochemically investigated. Two quasi-reversible one-electron oxidations and up to five quasi-reversible one-electron reductions have been revealed for these neutral double-decker compounds. The three bis(phthalocyaninato)cerium compounds display one cerium-centered redox wave between the first ligand-based oxidation and reduction. The half-wave potentials of the first and second oxidations and first reduction for double-deckers of the tervalent rare earths depend on the size of the metal center. The difference between the redox potentials of the second and third reductions for MIII(Pc)2, which represents the potential difference between the first oxidation and first reduction of [MIII(Pc)2]−, lies in the range 1.08−1.37 V and also gradually diminishes along with the lanthanide contraction, indicating enhanced π−π interactions in the double-deckers connected by the smaller, lanthanides. This corresponds well with the red-shift of the lowest energy band observed in the electronic absorption spectra of reduced double-decker [MIII(Pc′)2]− (Pc′ = Pc, TBPc, OOPc).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This PhD project has expanded the knowledge in the area of profluorescent nitroxides with regard to the synthesis and characterisations of novel profluorescent nitroxide probes as well as physical characterisation of the probe molecules in various polymer/physical environments. The synthesis of the first example of an azaphenalene-based fused aromatic nitroxide TMAO, [1,1,3,3-tetramethyl-2,3-dihydro-2-azaphenalen-2-yloxyl, was described. This novel nitroxide possesses some of the structural rigidity of the isoindoline class of nitroxides, as well as some properties akin to TEMPO nitroxides. Additionally, the integral aromatic ring imparts fluorescence that is switched on by radical scavenging reactions of the nitroxide, which makes it a sensitive probe for polymer degradation. In addition to the parent TMAO, 5 other azaphenalene derivatives were successfully synthesised. This new class of nitroxide was expected to have interesting redox properties when the structure was investigated by high-level ab initio molecular orbitals theory. This was expected to have implications with biological relevance as the calculated redox potentials for the azaphenalene ring class would make them potent antioxidant compounds. The redox potentials of 25 cyclic nitroxides from four different structural classes (pyrroline, piperidine, isoindoline and azaphenalene) were determined by cyclic voltammetry in acetonitrile. It was shown that potentials related to the one electron processes of the nitroxide were influenced by the type of ring system, ring substituents or groups surrounding the moiety. Favourable comparisons were found between theoretical and experimental potentials for pyrroline, piperidine and isoindoline ring classes. Substitution of these ring classes, were correctly calculated to have a small yet predictable effect on the potentials. The redox potentials of the azaphenalene ring class were underestimated by the calculations in all cases by at least a factor of two. This is believed to be due to another process influencing the redox potentials of the azaphenalene ring class which is not taken into account by the theoretical model. It was also possible to demonstrate the use of both azaphenalene and isoindoline nitroxides as additives for monitoring radical mediated damage that occurs in polypropylene as well as in more commercially relevant polyester resins. Polymer sample doped with nitroxide were exposed to both thermo-and photo-oxidative conditions with all nitroxides showing a protective effect. It was found that isoindoline nitroxides were able to indicate radical formation in polypropylene aged at elevated temperatures via fluorescence build-up. The azaphenalene nitroxide TMAO showed no such build-up of fluorescence. This was believed to be due to the more labile bond between the nitroxide and macromolecule and the protection may occur through a classical Denisov cycle, as is expected for commercially available HAS units. Finally, A new profluorescent dinitroxide, BTMIOA (9,10-bis(1,1,3,3- tetramethylisoindolin-2-yloxyl-5-yl)anthracene), was synthesised and shown to be a powerful probe for detecting changes during the initial stages of thermo-oxidative degradation of polypropylene. This probe, which contains a 9,10-diphenylanthracene core linked to two nitroxides, possesses strongly suppressed fluorescence due to quenching by the two nitroxide groups. This molecule also showed the greatest protective effect on thermo-oxidativly aged polypropylene. Most importantly, BTMIOA was found to be a valuable tool for imaging and mapping free-radical generation in polypropylene using fluorescence microscopy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interaction of quercetin, which is a bioflavonoid, with bovine serum albumin (BSA) was investigated under pseudo-physiological conditions by the application of UV–vis spectrometry, spectrofluorimetry and cyclic voltammetry (CV). These studies indicated a cooperative interaction between the quercetin–BSA complex and warfarin, which produced a ternary complex, quercetin–BSA–warfarin. It was found that both quercetin and warfarin were located in site I. However, the spectra of these three components overlapped and the chemometrics method – multivariate curve resolution-alternating least squares (MCR-ALS) was applied to resolve the spectra. The resolved spectra of quercetin–BSA and warfarin agreed well with their measured spectra, and importantly, the spectrum of the quercetin–BSA–warfarin complex was extracted. These results allowed the rationalization of the behaviour of the overlapping spectra. At lower concentrations ([warfarin] < 1 × 10−5 mol L−1), most of the site marker reacted with the quercetin–BSA, but free warfarin was present at higher concentrations. Interestingly, the ratio between quercetin–BSA and warfarin was found to be 1:2, suggesting a quercetin–BSA–(warfarin)2 complex, and the estimated equilibrium constant was 1.4 × 1011 M−2. The results suggest that at low concentrations, warfarin binds at the high-affinity sites (HAS), while low-affinity binding sites (LAS) are occupied at higher concentrations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cyclic voltammetry behaviour of gold in aqueous media is often regarded in very simple terms as a combination of two distinct processes, double layer charging/discharging and monolayer oxide formation/removal. This view is questioned here on the basis of both the present results and earlier independent data by other authors. It was demonstrated in the present case that both severe cathodization or thermal pretreatment of polycrystalline gold in acid solution resulted in the appearance of substantial Faradaic responses in the double layer region. Such anamolous behaviour, as outlined recently also for other metals, is rationalized in terms of the presence of active metal atoms (which undergo premonolayer oxidation) at the electrode surface. Such behaviour, which is also assumed to correspond to that of active sites on conventional gold surfaces, is assumed to be of vital importance in electrocatalysis; in many instances the latter process is also quite marked in the double layer region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electrochemical and electrocatalytic behaviour of silver nanoprisms, nanospheres and nanocubes of comparable size in an alkaline medium have been investigated to ascertain the shape dependent behaviour of silver nanoparticles, which are an extensively studied nanomaterial. The nanomaterials were synthesised using chemical methods and characterised with UV-visible spectroscopy, transmission electron microscopy and X-ray diffraction. The nanomaterials were immobilised on a substrate glassy carbon electrode and characterised by cyclic voltammetry for their surface oxide electrochemistry. The electrocatalytic oxidation of hydrazine and formaldehyde and the reduction of hydrogen peroxide were studied by performing cyclic voltammetric and chronoamperometric experiments for both the nanomaterials and a smooth polycrystalline macrosized silver electrode. In all cases the nanomaterials showed enhanced electrocatalytic activity over the macro-silver electrode. Significantly, the silver nanoprisms that are rich in hcp lamellar defects showed greater activity than nanospheres and nanocubes for all reactions studied.