987 resultados para CSG, Solid Modeling, Exact Computation, Intersection Curves, Algebraic Surfaces


Relevância:

100.00% 100.00%

Publicador:

Resumo:

La evaluación de la seguridad de estructuras antiguas de fábrica es un problema abierto.El material es heterogéneo y anisótropo, el estado previo de tensiones difícil de conocer y las condiciones de contorno inciertas. A comienzos de los años 50 se demostró que el análisis límite era aplicable a este tipo de estructuras, considerándose desde entonces como una herramienta adecuada. En los casos en los que no se produce deslizamiento la aplicación de los teoremas del análisis límite estándar constituye una herramienta formidable por su simplicidad y robustez. No es necesario conocer el estado real de tensiones. Basta con encontrar cualquier solución de equilibrio, y que satisfaga las condiciones de límite del material, en la seguridad de que su carga será igual o inferior a la carga real de inicio de colapso. Además esta carga de inicio de colapso es única (teorema de la unicidad) y se puede obtener como el óptimo de uno cualquiera entre un par de programas matemáticos convexos duales. Sin embargo, cuando puedan existir mecanismos de inicio de colapso que impliquen deslizamientos, cualquier solución debe satisfacer tanto las restricciones estáticas como las cinemáticas, así como un tipo especial de restricciones disyuntivas que ligan las anteriores y que pueden plantearse como de complementariedad. En este último caso no está asegurada la existencia de una solución única, por lo que es necesaria la búsqueda de otros métodos para tratar la incertidumbre asociada a su multiplicidad. En los últimos años, la investigación se ha centrado en la búsqueda de un mínimo absoluto por debajo del cual el colapso sea imposible. Este método es fácil de plantear desde el punto de vista matemático, pero intratable computacionalmente, debido a las restricciones de complementariedad 0 y z 0 que no son ni convexas ni suaves. El problema de decisión resultante es de complejidad computacional No determinista Polinomial (NP)- completo y el problema de optimización global NP-difícil. A pesar de ello, obtener una solución (sin garantía de exito) es un problema asequible. La presente tesis propone resolver el problema mediante Programación Lineal Secuencial, aprovechando las especiales características de las restricciones de complementariedad, que escritas en forma bilineal son del tipo y z = 0; y 0; z 0 , y aprovechando que el error de complementariedad (en forma bilineal) es una función de penalización exacta. Pero cuando se trata de encontrar la peor solución, el problema de optimización global equivalente es intratable (NP-difícil). Además, en tanto no se demuestre la existencia de un principio de máximo o mínimo, existe la duda de que el esfuerzo empleado en aproximar este mínimo esté justificado. En el capítulo 5, se propone hallar la distribución de frecuencias del factor de carga, para todas las soluciones de inicio de colapso posibles, sobre un sencillo ejemplo. Para ello, se realiza un muestreo de soluciones mediante el método de Monte Carlo, utilizando como contraste un método exacto de computación de politopos. El objetivo final es plantear hasta que punto está justificada la busqueda del mínimo absoluto y proponer un método alternativo de evaluación de la seguridad basado en probabilidades. Las distribuciones de frecuencias, de los factores de carga correspondientes a las soluciones de inicio de colapso obtenidas para el caso estudiado, muestran que tanto el valor máximo como el mínimo de los factores de carga son muy infrecuentes, y tanto más, cuanto más perfecto y contínuo es el contacto. Los resultados obtenidos confirman el interés de desarrollar nuevos métodos probabilistas. En el capítulo 6, se propone un método de este tipo basado en la obtención de múltiples soluciones, desde puntos de partida aleatorios y calificando los resultados mediante la Estadística de Orden. El propósito es determinar la probabilidad de inicio de colapso para cada solución.El método se aplica (de acuerdo a la reducción de expectativas propuesta por la Optimización Ordinal) para obtener una solución que se encuentre en un porcentaje determinado de las peores. Finalmente, en el capítulo 7, se proponen métodos híbridos, incorporando metaheurísticas, para los casos en que la búsqueda del mínimo global esté justificada. Abstract Safety assessment of the historic masonry structures is an open problem. The material is heterogeneous and anisotropic, the previous state of stress is hard to know and the boundary conditions are uncertain. In the early 50's it was proven that limit analysis was applicable to this kind of structures, being considered a suitable tool since then. In cases where no slip occurs, the application of the standard limit analysis theorems constitutes an excellent tool due to its simplicity and robustness. It is enough find any equilibrium solution which satisfy the limit constraints of the material. As we are certain that this load will be equal to or less than the actual load of the onset of collapse, it is not necessary to know the actual stresses state. Furthermore this load for the onset of collapse is unique (uniqueness theorem), and it can be obtained as the optimal from any of two mathematical convex duals programs However, if the mechanisms of the onset of collapse involve sliding, any solution must satisfy both static and kinematic constraints, and also a special kind of disjunctive constraints linking the previous ones, which can be formulated as complementarity constraints. In the latter case, it is not guaranted the existence of a single solution, so it is necessary to look for other ways to treat the uncertainty associated with its multiplicity. In recent years, research has been focused on finding an absolute minimum below which collapse is impossible. This method is easy to set from a mathematical point of view, but computationally intractable. This is due to the complementarity constraints 0 y z 0 , which are neither convex nor smooth. The computational complexity of the resulting decision problem is "Not-deterministic Polynomialcomplete" (NP-complete), and the corresponding global optimization problem is NP-hard. However, obtaining a solution (success is not guaranteed) is an affordable problem. This thesis proposes solve that problem through Successive Linear Programming: taking advantage of the special characteristics of complementarity constraints, which written in bilinear form are y z = 0; y 0; z 0 ; and taking advantage of the fact that the complementarity error (bilinear form) is an exact penalty function. But when it comes to finding the worst solution, the (equivalent) global optimization problem is intractable (NP-hard). Furthermore, until a minimum or maximum principle is not demonstrated, it is questionable that the effort expended in approximating this minimum is justified. XIV In chapter 5, it is proposed find the frequency distribution of the load factor, for all possible solutions of the onset of collapse, on a simple example. For this purpose, a Monte Carlo sampling of solutions is performed using a contrast method "exact computation of polytopes". The ultimate goal is to determine to which extent the search of the global minimum is justified, and to propose an alternative approach to safety assessment based on probabilities. The frequency distributions for the case study show that both the maximum and the minimum load factors are very infrequent, especially when the contact gets more perfect and more continuous. The results indicates the interest of developing new probabilistic methods. In Chapter 6, is proposed a method based on multiple solutions obtained from random starting points, and qualifying the results through Order Statistics. The purpose is to determine the probability for each solution of the onset of collapse. The method is applied (according to expectations reduction given by the Ordinal Optimization) to obtain a solution that is in a certain percentage of the worst. Finally, in Chapter 7, hybrid methods incorporating metaheuristics are proposed for cases in which the search for the global minimum is justified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Available on demand as hard copy or computer file from Cornell University Library.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a scheme for quantum-error correction that employs feedback and weak measurement rather than the standard tools of projective measurement and fast controlled unitary gates. The advantage of this scheme over previous protocols [for example, Ahn Phys. Rev. A 65, 042301 (2001)], is that it requires little side processing while remaining robust to measurement inefficiency, and is therefore considerably more practical. We evaluate the performance of our scheme by simulating the correction of bit flips. We also consider implementation in a solid-state quantum-computation architecture and estimate the maximal error rate that could be corrected with current technology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The category of rational O(2)-equivariant cohomology theories has an algebraic model A(O(2)), as established by work of Greenlees. That is, there is an equivalence of categories between the homotopy category of rational O(2)-equivariant spectra and the derived category of the abelian model DA(O(2)). In this paper we lift this equivalence of homotopy categories to the level of Quillen equivalences of model categories. This Quillen equivalence is also compatible with the Adams short exact sequence of the algebraic model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fungal growth in time and space at the substrate surface was modelled for a simple system mimicking solid-state fermentation, using a polycarbonate Nucleopore membrane laid over a glucose solution. Biomass production depends on both tip density and the diffusion of glucose within the fungal hyphae. The model predicts early increases in both height and concentration, followed by a period in which the biomass profile moves with a constant wavefront. The rate of increase in height increases as tip diffusivity increases or as the Monod saturation constant for glucose decreases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper concerns dynamics and bifurcations properties of a class of continuous-defined one-dimensional maps, in a three-dimensional parameter space: Blumberg's functions. This family of functions naturally incorporates a major focus of ecological research: the Allee effect. We provide a necessary condition for the occurrence of this phenomenon, associated with the stability of a fixed point. A central point of our investigation is the study of bifurcations structure for this class of functions. We verified that under some sufficient conditions, Blumberg's functions have a particular bifurcations structure: the big bang bifurcations of the so-called "box-within-a-box" type, but for different kinds of boxes. Moreover, it is verified that these bifurcation cascades converge to different big bang bifurcation curves, where for the corresponding parameter values are associated distinct attractors. This work contributes to clarify the big bang bifurcation analysis for continuous maps. To support our results, we present fold and flip bifurcations curves and surfaces, and numerical simulations of several bifurcation diagrams.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis gives an overview of the use of the level set methods in the field of image science. The similar fast marching method is discussed for comparison, also the narrow band and the particle level set methods are introduced. The level set method is a numerical scheme for representing, deforming and recovering structures in an arbitrary dimensions. It approximates and tracks the moving interfaces, dynamic curves and surfaces. The level set method does not define how and why some boundary is advancing the way it is but simply represents and tracks the boundary. The principal idea of the level set method is to represent the N dimensional boundary in the N+l dimensions. This gives the generality to represent even the complex boundaries. The level set methods can be powerful tools to represent dynamic boundaries, but they can require lot of computing power. Specially the basic level set method have considerable computational burden. This burden can be alleviated with more sophisticated versions of the level set algorithm like the narrow band level set method or with the programmable hardware implementation. Also the parallel approach can be used in suitable applications. It is concluded that these methods can be used in a quite broad range of image applications, like computer vision and graphics, scientific visualization and also to solve problems in computational physics. Level set methods and methods derived and inspired by it will be in the front line of image processing also in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NURBS are widely used parametric approximation curves or surfaces. NURBS can be applied to the many applications. Examples of these applications are some computeraided design applications and some medical applications. Use of NURBS is very intuitive. The objective of this work was to implement the NURBS toolbox in the Matlab environment. Matlab is a program for many kinds of computational purposes. Matlab is also a programming language. NURBS toolbox implemented in this work offers a user an opportunity to use functions of this toolbox as parts of the user’s own programs. Current version of NURBS toolbox includes functions for NURBS curve and surface evaluation. The toolbox is designed such, that it allows extensions and enhancements in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exercises and solutions in PDF