60 resultados para COUDERT
Resumo:
Control of the torsional angles of nonrigid molecules is key for the development of emerging areas like molecular electronics and nanotechnology. Based on a rigorous calculation of the rotation-torsion-Stark energy levels of nonrigid biphenyl-like molecules, we show that, unlike previously believed, instantaneous rotation-torsion-Stark eigenstates of such molecules, interacting with a strong laser field, present a large degree of delocalization in the torsional coordinate even for the lowest energy states. This is due to a strong coupling between overall rotation and torsion leading to a breakdown of the torsional alignment. Thus, adiabatic control of changes on the planarity of this kind of molecule is essentially impossible unless the temperature is on the order of a few Kelvin.
Resumo:
Bio-logging studies suffer from the lack of real controls. However, it is still possible to compare indirect parameters between control and equipped animals to assess the level of global disturbance due to instrumentation. In addition, it is also possible to compare the behaviour of free-ranging animals between individuals equipped with different techniques or instruments to determine the less deleterious approach. We instrumented Adelie Penguins (Pygoscelis adeliae) with internal or external time-depth recorders and monitored them in parallel with a control group during the first foraging trip following instrumentation. Foraging trip duration was significantly longer in the internally-equipped group. This difference was due to a larger number of dives, reflecting a lower foraging ability or a higher food demand, and longer periods of recovery at the surface. These longer recovery periods were likely to be due to a reduced efficiency to ventilate at the surface, probably because the implanted devices pressurised adjacent organs such as air sacs. Moreover, descent and ascent rates were slightly lower in externally-equipped penguins, presumably because external instrumentation increased the bird drag. Looking at our results, implantation appears more disadvantageous - at least for short-term deployment - than external equipment in Adelie Penguins, while this method has been described to induce no negative effects in long-term studies. This underlines the need to control for potential effects due to methodological aspects in any study using data loggers in free-ranging animals, to minimise disturbance and collect reliable data.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Adult male and female emperor penguins (Aptenodytes forsteri) were fitted with satellite transmitters at Pointe-Géologie (Adélie Land), Dumont d'Urville Sea coast, in November 2005. Nine of 30 data sets were selected for analyses to investigate the penguins' diving behaviour at high resolution (doi:10.1594/PANGAEA.633708, doi:10.1594/PANGAEA.633709, doi:10.1594/PANGAEA.633710, doi:10.1594/PANGAEA.633711). The profiles are in synchrony with foraging trips of the birds during austral spring (doi:10.1594/PANGAEA.472171, doi:10.1594/PANGAEA.472173, doi:10.1594/PANGAEA.472164, doi:10.1594/PANGAEA.472160, doi:10.1594/PANGAEA.472161). Corresponding high resolution winter data (n = 5; archived elsewhere) were provided by A. Ancel, Centre d'Ecologie et Physiologie Energétiques, CNRS, Strasbourg, France. Air-breathing divers tend to increase their overall dive duration with increasing dive depth. In most penguin species, this occurs due to increasing transit (descent and ascent) durations but also because the duration of the bottom phase of the dive increases with increasing depth. We interpreted the efficiency with which emperor penguins can exploit different diving depths by analysing dive depth profile data of nine birds studied during the early and late chick-rearing period in Adélie Land, Antarctica. Another eight datasets of dive depth and duration frequency recordings (doi:10.1594/PANGAEA.472150, doi:10.1594/PANGAEA.472152, doi:10.1594/PANGAEA.472154, doi:10.1594/PANGAEA.472155, doi:10.1594/PANGAEA.472142, doi:10.1594/PANGAEA.472144, doi:10.1594/PANGAEA.472146, doi:10.1594/PANGAEA.472147), which backup the analysed high resolution depth profile data, and dive depth and duration frequency recordings of another bird (doi:10.1594/PANGAEA.472156, doi:10.1594/PANGAEA.472148) did not match the requirement of high resolution for analyses. Eleven additional data sets provide information on the overall foraging distribution of emperor penguins during the period analysed (doi:10.1594/PANGAEA.472157, doi:10.1594/PANGAEA.472158, doi:10.1594/PANGAEA.472162, doi:10.1594/PANGAEA.472163, doi:10.1594/PANGAEA.472166, doi:10.1594/PANGAEA.472167, doi:10.1594/PANGAEA.472168, doi:10.1594/PANGAEA.472170, doi:10.1594/PANGAEA.472172, doi:10.1594/PANGAEA.472174, doi:10.1594/PANGAEA.472175).
Resumo:
Acknowledgements K. Ashbrook, M. Barrueto, K. Elner, A. Hargreaves, S. Jacobs, G. Lancton, M. LeVaillant, E. Grosbellet, A. Moody, A. Ronston, J. Provencher, P. Smith, K. Woo and P. Woodward helped in the field. J. Nakoolak kept us safe from bears. N. Sapir and two anonymous reviewers provided very useful comments on an earlier version of our manuscript. R. Armstrong at the Nunavut Research Institute, M. Mallory at the Canadian Wildlife Service Northern Research Division and C. Eberl at National Wildlife Research Centre in Ottawa provided logistical support. F. Crenner, N. Chatelain and M. Brucker customized the GPS at the IPHC-CNRS. KHE received financial support through a NSERC Vanier Canada Graduate Scholarship, ACUNS Garfield Weston Northern Studies scholarship and AINA Jennifer Robinson Scholarship and JFH received NSERC Discovery Grant funding. J. Welcker generously loaned some accelerometers. All procedures were approved under the guidelines of the Canadian Council for Animal Care.
Resumo:
According to life-history theory, individuals optimize their decisions in order to maximize their fitness. This raises a conflict between parents, which need to cooperate to ensure the propagation of their genes but at the same time need to minimize the associated costs. Trading-off between benefits and costs of a reproduction is one of the major forces driving demographic trends and has shaped several different parental care strategies. Using little penguins (Eudyptula minor) as a model, we investigated whether individuals of a pair provide equal parental effort when raising offspring and whether their behavior was consistent over 8 years of contrasting resource availability. Using an automated identification system, we found that 72% of little penguin pairs exhibited unforced (i.e., that did not result from desertion of 1 parent) unequal partnership through the postguard stage. This proportion was lower in favorable years. Although being an equal pair appeared to be a better strategy, it was nonetheless the least often observed. Individuals that contributed less than their partner were not less experienced (measured by age), and gender did not explain differences between partners. Furthermore, birds that contributed little or that contributed a lot tended to be consistent in their level of contribution across years. We suggest that unequal effort during breeding may reflect differences in individual quality, and we encourage future studies on parental care to consider this consistent low and high contributor behavior when investigating differences in pair investment into its offspring. Key words: attendance patterns, individual quality, meal size, parental care, reproductive costs, seabirds.
Resumo:
It is a golden age for animal movement studies and so an opportune time to assess priorities for future work. We assembled 40 experts to identify key questions in this field, focussing on marine megafauna, which include a broad range of birds, mammals, reptiles, and fish. Research on these taxa has both underpinned many of the recent technical developments and led to fundamental discoveries in the field. We show that the questions have broad applicability to other taxa, including terrestrial animals, flying insects, and swimming invertebrates, and, as such, this exercise provides a useful roadmap for targeted deployments and data syntheses that should advance the field of movement ecology.
Resumo:
It is a golden age for animal movement studies and so an opportune time to assess priorities for future work. We assembled 40 experts to identify key questions in this field, focussing on marine megafauna, which include a broad range of birds, mammals, reptiles, and fish. Research on these taxa has both underpinned many of the recent technical developments and led to fundamental discoveries in the field. We show that the questions have broad applicability to other taxa, including terrestrial animals, flying insects, and swimming invertebrates, and, as such, this exercise provides a useful roadmap for targeted deployments and data syntheses that should advance the field of movement ecology.