937 resultados para CORRESPONDING-STATES THEORY


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We discuss the matching of the BPS part of the spectrum for a (super) membrane, which gives the possibility of getting the membrane's results via string calculations. In the small coupling limit of M theory the entropy of the system coincides with the standard entropy of type IIB string theory (including the logarithmic correction term). The thermodynamic behavior at a large coupling constant is computed by considering M theory on a manifold with a topology T-2 x R-9. We argue that the finite temperature partition functions (brane Laurent series for p not equal 1) associated with the BPS p-brane spectrum can be analytically continued to well-defined functionals. It means that a finite temperature can be introduced in brane theory, which behaves like finite temperature field theory. In the limit p --> 0 (point particle limit) it gives rise to the standard behavior of thermodynamic quantities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The metal-insulator or metal-amorphous semiconductor blocking contact is still not well understood. Here, we discuss the steady state characteristics of a non-intimate metal-insulator Schottky barrier. We consider an exponential distribution (in energy) of impurity states in addition to impurity states at a single energy level within the depletion region. We present analytical expressions for the electrical potential, field, thickness of depletion region, capacitance, and charge accumulated in the depletion region. We also discuss ln I versus V(ap) data. Finally, we compare the characteristics in three cases: (i) impurity states at only a single energy level; (ii) uniform energy distribution of impurity states; and (iii) exponential energy distribution of impurity states.In general, the electrical characteristics of Schottky barriers and metal-insulator-metal structures with Schottky barriers depend strongly on the energy distribution of impurity states.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The metal-insulator (or amorphous semiconductor) blocking contact is still not well understood. In the present paper, we discuss the non steady state characteristics of Metal-lnsulator-Metal Structure with non-intimate blocking contacts (i.e. Metal-Oxide-Insulator-Metal Structure). We consider a uniform distribution (in energy) of impurity states in addition to impurity states at a single energy level within the depletion region. We discuss thermal as well as isothermal characteristics and present expressions for the temperature of maximum current (T-m) and a method to calculate the density of uniformly distributed impurity states. The variation of mobility with electrical field has also been considered. Finally we plot the theoretical curves under different conditions. The present results are closing into available experimental results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this brief article we discuss spin-polarization operators and spin-polarization states of 2 + 1 massive Dirac fermions and find a convenient representation by the help of 4-spinors for their description. We stress that in particular the use of such a representation allows us to introduce the conserved covariant spin operator in the 2 + 1 field theory. Another advantage of this representation is related to the pseudoclassical limit of the theory. Indeed, quantization of the pseudoclassical model of a spinning particle in 2 + 1 dimensions leads to the 4-spinor representation as the adequate realization of the operator algebra, where the corresponding operator of a first-class constraint, which cannot be gauged out by imposing the gauge condition, is just the covariant operator previously introduced in the quantum theory.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We discuss non-steady state electrical characteristics of a metal-insulator-metal structure. We consider an exponential distribution (in energy) of impurity states in addition to impurity states at a single energy level within the depletion region. We discuss thermal as well as isothermal characteristics and present an expression for the temperature of maximum current (Tm) and a method to calculate the density of exponentially distributed impurity states. We plot the theoretical curves for various sets of parameters and the variation of Tm, and Im (maximum current) with applied potential for various impurity distributions. The present model can explain the available experimental results. Finally we compare the non-steady state characteristics in three cases: (i) impurity states only at a single energy level, (ii) uniform energetic distribution of impurity states, and (iii) exponential energetic distribution of impurity states.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

First-principles calculations set the comprehension over performance of novel cathodoluminescence (CL) properties of BaZrO3 prepared through microwave-assisted hydrothermal. Ground (singlet, s*) and excited (singlet s** and triplet t**) electronic states were built from zirconium displacement of 0.2 Å in {001} direction. Each ground and excited states were characterized by the correlation of their corresponding geometry with electronic structures and Raman vibrational frequencies which were also identified experimentally. A kind of optical polarization switching was identified by the redistribution of 4dz2 and 4dxz (Zr) orbitals and 2pz O orbital. As a consequence, asymmetric bending and stretching modes theoretically obtained reveal a direct dependence with their polyhedral intracluster and/or extracluster ZrO6 distortions with electronic structure. Then, CL of the as-synthesized BaZrO3 can be interpreted as a result of stable triplet excited states, which are able to trap electrons, delaying the emission process due to spin multiplicity changes. © 2013 AIP Publishing LLC.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider general d-dimensional lattice ferromagnetic spin systems with nearest neighbor interactions in the high temperature region ('beta' << 1). Each model is characterized by a single site apriori spin distribution taken to be even. We also take the parameter 'alfa' = ('S POT.4') - 3 '(S POT.2') POT.2' > 0, i.e. in the region which we call Gaussian subjugation, where ('S POT.K') denotes the kth moment of the apriori distribution. Associated with the model is a lattice quantum field theory known to contain a particle of asymptotic mass -ln 'beta' and a bound state below the two-particle threshold. We develop a 'beta' analytic perturbation theory for the binding energy of this bound state. As a key ingredient in obtaining our result we show that the Fourier transform of the two-point function is a meromorphic function, with a simple pole, in a suitable complex spectral parameter and the coefficients of its Laurent expansion are analytic in 'beta'.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In questo lavoro abbiamo studiato la presenza di correzioni, dette unusuali, agli stati eccitati delle teorie conformi. Inizialmente abbiamo brevemente descritto l'approccio di Calabrese e Cardy all'entropia di entanglement nei sistemi unidimensionali al punto critico. Questo approccio permette di ottenere la famosa ed universale divergenza logaritmica di questa quantità. Oltre a questo andamento logaritmico son presenti correzioni, che dipendono dalla geometria su cui si basa l'approccio di Calabrese e Cardy, il cui particolare scaling è noto ed è stato osservato in moltissimi lavori in letteratura. Questo scaling è dovuto alla rottura locale della simmetria conforme, che è una conseguenza della criticità del sistema, intorno a particolari punti detti branch points usati nell'approccio di Calabrese e Cardy. In questo lavoro abbiamo dimostrato che le correzioni all'entropia di entanglement degli stati eccitati della teoria conforme, che può anch'essa essere calcolata tramite l'approccio di Calabrese e Cardy, hanno lo stesso scaling di quelle osservate negli stati fondamentali. I nostri risultati teorici sono stati poi perfettamente confermati dei calcoli numerici che abbiamo eseguito sugli stati eccitati del modello XX. Sono stati inoltre usati risultati già noti per lo stato fondamentale del medesimo modello per poter studiare la forma delle correzioni dei suoi stati eccitati. Questo studio ha portato alla conclusione che la forma delle correzioni nei due differenti casi è la medesima a meno di una funzione universale.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coupled-cluster (CC) theory is one of the most successful approaches in high-accuracy quantum chemistry. The present thesis makes a number of contributions to the determination of molecular properties and excitation energies within the CC framework. The multireference CC (MRCC) method proposed by Mukherjee and coworkers (Mk-MRCC) has been benchmarked within the singles and doubles approximation (Mk-MRCCSD) for molecular equilibrium structures. It is demonstrated that Mk-MRCCSD yields reliable results for multireference cases where single-reference CC methods fail. At the same time, the present work also illustrates that Mk-MRCC still suffers from a number of theoretical problems and sometimes gives rise to results of unsatisfactory accuracy. To determine polarizability tensors and excitation spectra in the MRCC framework, the Mk-MRCC linear-response function has been derived together with the corresponding linear-response equations. Pilot applications show that Mk-MRCC linear-response theory suffers from a severe problem when applied to the calculation of dynamic properties and excitation energies: The Mk-MRCC sufficiency conditions give rise to a redundancy in the Mk-MRCC Jacobian matrix, which entails an artificial splitting of certain excited states. This finding has established a new paradigm in MRCC theory, namely that a convincing method should not only yield accurate energies, but ought to allow for the reliable calculation of dynamic properties as well. In the context of single-reference CC theory, an analytic expression for the dipole Hessian matrix, a third-order quantity relevant to infrared spectroscopy, has been derived and implemented within the CC singles and doubles approximation. The advantages of analytic derivatives over numerical differentiation schemes are demonstrated in some pilot applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Standard Model of particle physics is a very successful theory which describes nearly all known processes of particle physics very precisely. Nevertheless, there are several observations which cannot be explained within the existing theory. In this thesis, two analyses with high energy electrons and positrons using data of the ATLAS detector are presented. One, probing the Standard Model of particle physics and another searching for phenomena beyond the Standard Model.rnThe production of an electron-positron pair via the Drell-Yan process leads to a very clean signature in the detector with low background contributions. This allows for a very precise measurement of the cross-section and can be used as a precision test of perturbative quantum chromodynamics (pQCD) where this process has been calculated at next-to-next-to-leading order (NNLO). The invariant mass spectrum mee is sensitive to parton distribution functions (PFDs), in particular to the poorly known distribution of antiquarks at large momentum fraction (Bjoerken x). The measurementrnof the high-mass Drell-Yan cross-section in proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV is performed on a dataset collected with the ATLAS detector, corresponding to an integrated luminosity of 4.7 fb-1. The differential cross-section of pp -> Z/gamma + X -> e+e- + X is measured as a function of the invariant mass in the range 116 GeV < mee < 1500 GeV. The background is estimated using a data driven method and Monte Carlo simulations. The final cross-section is corrected for detector effects and different levels of final state radiation corrections. A comparison isrnmade to various event generators and to predictions of pQCD calculations at NNLO. A good agreement within the uncertainties between measured cross-sections and Standard Model predictions is observed.rnExamples of observed phenomena which can not be explained by the Standard Model are the amount of dark matter in the universe and neutrino oscillations. To explain these phenomena several extensions of the Standard Model are proposed, some of them leading to new processes with a high multiplicity of electrons and/or positrons in the final state. A model independent search in multi-object final states, with objects defined as electrons and positrons, is performed to search for these phenomenas. Therndataset collected at a center-of-mass energy of sqrt(s) = 8 TeV, corresponding to an integrated luminosity of 20.3 fb-1 is used. The events are separated in different categories using the object multiplicity. The data-driven background method, already used for the cross-section measurement was developed further for up to five objects to get an estimation of the number of events including fake contributions. Within the uncertainties the comparison between data and Standard Model predictions shows no significant deviations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

One of the most influential statements in the anomie theory tradition has been Merton’s argument that the volume of instrumental property crime should be higher where there is a greater imbalance between the degree of commitment to monetary success goals and the degree of commitment to legitimate means of pursing such goals. Contemporary anomie theories stimulated by Merton’s perspective, most notably Messner and Rosenfeld’s institutional anomie theory, have expanded the scope conditions by emphasizing lethal criminal violence as an outcome to which anomie theory is highly relevant, and virtually all contemporary empirical studies have focused on applying the perspective to explaining spatial variation in homicide rates. In the present paper, we argue that current explications of Merton’s theory and IAT have not adequately conveyed the relevance of the core features of the anomie perspective to lethal violence. We propose an expanded anomie model in which an unbalanced pecuniary value system – the core causal variable in Merton’s theory and IAT – translates into higher levels of homicide primarily in indirect ways by increasing levels of firearm prevalence, drug market activity, and property crime, and by enhancing the degree to which these factors stimulate lethal outcomes. Using aggregate-level data collected during the mid-to-late 1970s for a sample of relatively large social aggregates within the U.S., we find a significant effect on homicide rates of an interaction term reflecting high levels of commitment to monetary success goals and low levels of commitment to legitimate means. Virtually all of this effect is accounted for by higher levels of property crime and drug market activity that occur in areas with an unbalanced pecuniary value system. Our analysis also reveals that property crime is more apt to lead to homicide under conditions of high levels of structural disadvantage. These and other findings underscore the potential value of elaborating the anomie perspective to explicitly account for lethal violence.