924 resultados para CORONARY ARTERY DISEASE (CAD)
Resumo:
An increasing number of patients suffering from cardiovascular disease, especially coronary artery disease (CAD), are treated with aspirin and/or clopidogrel for the prevention of major adverse events. Unfortunately, there are no specific, widely accepted recommendations for the perioperative management of patients receiving antiplatelet therapy. Therefore, members of the Perioperative Haemostasis Group of the Society on Thrombosis and Haemostasis Research (GTH), the Perioperative Coagulation Group of the Austrian Society for Anesthesiology, Reanimation and Intensive Care (ÖGARI) and the Working Group Thrombosis of the European Society of Cardiology (ESC) have created this consensus position paper to provide clear recommendations on the perioperative use of anti-platelet agents (specifically with semi-urgent and urgent surgery), strongly supporting a multidisciplinary approach to optimize the treatment of individual patients with coronary artery disease who need major cardiac and non-cardiac surgery. With planned surgery, drug eluting stents (DES) should not be used unless surgery can be delayed for ≥12 months after DES implantation. If surgery cannot be delayed, surgical revascularisation, bare-metal stents or pure balloon angioplasty should be considered. During ongoing antiplatelet therapy, elective surgery should be delayed for the recommended duration of treatment. In patients with semi-urgent surgery, the decision to prematurely stop one or both antiplatelet agents (at least 5 days pre-operatively) has to be taken after multidisciplinary consultation, evaluating the individual thrombotic and bleeding risk. Urgently needed surgery has to take place under full antiplatelet therapy despite the increased bleeding risk. A multidisciplinary approach for optimal antithrombotic and haemostatic patient management is thus mandatory.
Resumo:
A family history of coronary artery disease (CAD), especially when the disease occurs at a young age, is a potent risk factor for CAD. DNA collection in families in which two or more siblings are affected at an early age allows identification of genetic factors for CAD by linkage analysis. We performed a genomewide scan in 1,168 individuals from 438 families, including 493 affected sibling pairs with documented onset of CAD before 51 years of age in men and before 56 years of age in women. We prospectively defined three phenotypic subsets of families: (1) acute coronary syndrome in two or more siblings; (2) absence of type 2 diabetes in all affected siblings; and (3) atherogenic dyslipidemia in any one sibling. Genotypes were analyzed for 395 microsatellite markers. Regions were defined as providing evidence for linkage if they provided parametric two-point LOD scores >1.5, together with nonparametric multipoint LOD scores >1.0. Regions on chromosomes 3q13 (multipoint LOD = 3.3; empirical P value <.001) and 5q31 (multipoint LOD = 1.4; empirical P value <.081) met these criteria in the entire data set, and regions on chromosomes 1q25, 3q13, 7p14, and 19p13 met these criteria in one or more of the subsets. Two regions, 3q13 and 1q25, met the criteria for genomewide significance. We have identified a region on chromosome 3q13 that is linked to early-onset CAD, as well as additional regions of interest that will require further analysis. These data provide initial areas of the human genome where further investigation may reveal susceptibility genes for early-onset CAD.
Resumo:
OBJECTIVE: Our objective was to compare two state-of-the-art coronary MRI (CMRI) sequences with regard to image quality and diagnostic accuracy for the detection of coronary artery disease (CAD). SUBJECTS AND METHODS: Twenty patients with known CAD were examined with a navigator-gated and corrected free-breathing 3D segmented gradient-echo (turbo field-echo) CMRI sequence and a steady-state free precession sequence (balanced turbo field-echo). CMRI was performed in a transverse plane for the left coronary artery and a double-oblique plane for the right coronary artery system. Subjective image quality (1- to 4-point scale, with 1 indicating excellent quality) and objective image quality parameters were independently determined for both sequences. Sensitivity, specificity, and accuracy for the detection of significant (> or = 50% diameter) coronary artery stenoses were determined as defined in invasive catheter X-ray coronary angiography. RESULTS: Subjective image quality was superior for the balanced turbo field-echo approach (1.8 +/- 0.9 vs 2.3 +/- 1.0 for turbo field-echo; p < 0.001). Vessel sharpness, signal-to-noise ratio, and contrast-to-noise ratio were all superior for the balanced turbo field-echo approach (p < 0.01 for signal-to-noise ratio and contrast-to-noise ratio). Of the 103 segments, 18% of turbo field-echo segments and 9% of balanced turbo field-echo segments had to be excluded from disease evaluation because of insufficient image quality. Sensitivity, specificity, and accuracy for the detection of significant coronary artery stenoses in the evaluated segments were 92%, 67%, 85%, respectively, for turbo field-echo and 82%, 82%, 81%, respectively, for balanced turbo field-echo. CONCLUSION: Balanced turbo field-echo offers improved image quality with significantly fewer nondiagnostic segments when compared with turbo field-echo. For the detection of CAD, both sequences showed comparable accuracy for the visualized segments.
Resumo:
BACKGROUND: The strong observational association between total homocysteine (tHcy) concentrations and risk of coronary artery disease (CAD) and the null associations in the homocysteine-lowering trials have prompted the need to identify genetic variants associated with homocysteine concentrations and risk of CAD. OBJECTIVE: We tested whether common genetic polymorphisms associated with variation in tHcy are also associated with CAD. DESIGN: We conducted a meta-analysis of genome-wide association studies (GWAS) on tHcy concentrations in 44,147 individuals of European descent. Polymorphisms associated with tHcy (P < 10(-8)) were tested for association with CAD in 31,400 cases and 92,927 controls. RESULTS: Common variants at 13 loci, explaining 5.9% of the variation in tHcy, were associated with tHcy concentrations, including 6 novel loci in or near MMACHC (2.1 Ã- 10(-9)), SLC17A3 (1.0 Ã- 10(-8)), GTPB10 (1.7 Ã- 10(-8)), CUBN (7.5 Ã- 10(-10)), HNF1A (1.2 Ã- 10(-12)), and FUT2 (6.6 Ã- 10(-9)), and variants previously reported at or near the MTHFR, MTR, CPS1, MUT, NOX4, DPEP1, and CBS genes. Individuals within the highest 10% of the genotype risk score (GRS) had 3-μmol/L higher mean tHcy concentrations than did those within the lowest 10% of the GRS (P = 1 Ã- 10(-36)). The GRS was not associated with risk of CAD (OR: 1.01; 95% CI: 0.98, 1.04; P = 0.49). CONCLUSIONS: We identified several novel loci that influence plasma tHcy concentrations. Overall, common genetic variants that influence plasma tHcy concentrations are not associated with risk of CAD in white populations, which further refutes the causal relevance of moderately elevated tHcy concentrations and tHcy-related pathways for CAD.
Resumo:
Although experimental studies have suggested that insulin-like growth factor I (IGF-I) and its binding protein IGFBP-3 might have a role in the aetiology of coronary artery disease (CAD), the relevance of circulating IGFs and their binding proteins in the development of CAD in human populations is unclear. We conducted a nested case-control study, with a mean follow-up of six years, within the EPIC-Norfolk cohort to assess the association between circulating levels of IGF-I and IGFBP-3 and risk of CAD in up to 1,013 cases and 2,055 controls matched for age, sex and study enrolment date. After adjustment for cardiovascular risk factors, we found no association between circulating levels of IGF-I or IGFBP-3 and risk of CAD (odds ratio: 0.98 (95% Cl 0.90-1.06) per 1 SD increase in circulating IGF-I; odds ratio: 1.02 (95% Cl 0.94-1.12) for IGFBP-3). We examined associations between tagging single nucleotide polymorphisms (tSNPs) at the IGF1 and IGFBP3 loci and circulating IGF-I and IGFBP-3 levels in up to 1,133 cases and 2,223 controls and identified three tSNPs (rs1520220, rs3730204, rs2132571) that showed independent association with either circulating IGF-I or IGFBP-3 levels. In an assessment of 31 SNPs spanning the IGF1 or IGFBP3 loci, none were associated with risk of CAD in a meta-analysis that included EPIC-Norfolk and eight additional studies comprising up to 9,319 cases and 19,964 controls. Our results indicate that IGF-I and IGFBP-3 are unlikely to be importantly involved in the aetiology of CAD in human populations.
Resumo:
BACKGROUND: Persons infected with human immunodeficiency virus (HIV) have increased rates of coronary artery disease (CAD). The relative contribution of genetic background, HIV-related factors, antiretroviral medications, and traditional risk factors to CAD has not been fully evaluated in the setting of HIV infection. METHODS: In the general population, 23 common single-nucleotide polymorphisms (SNPs) were shown to be associated with CAD through genome-wide association analysis. Using the Metabochip, we genotyped 1875 HIV-positive, white individuals enrolled in 24 HIV observational studies, including 571 participants with a first CAD event during the 9-year study period and 1304 controls matched on sex and cohort. RESULTS: A genetic risk score built from 23 CAD-associated SNPs contributed significantly to CAD (P = 2.9 × 10(-4)). In the final multivariable model, participants with an unfavorable genetic background (top genetic score quartile) had a CAD odds ratio (OR) of 1.47 (95% confidence interval [CI], 1.05-2.04). This effect was similar to hypertension (OR = 1.36; 95% CI, 1.06-1.73), hypercholesterolemia (OR = 1.51; 95% CI, 1.16-1.96), diabetes (OR = 1.66; 95% CI, 1.10-2.49), ≥ 1 year lopinavir exposure (OR = 1.36; 95% CI, 1.06-1.73), and current abacavir treatment (OR = 1.56; 95% CI, 1.17-2.07). The effect of the genetic risk score was additive to the effect of nongenetic CAD risk factors, and did not change after adjustment for family history of CAD. CONCLUSIONS: In the setting of HIV infection, the effect of an unfavorable genetic background was similar to traditional CAD risk factors and certain adverse antiretroviral exposures. Genetic testing may provide prognostic information complementary to family history of CAD.
Resumo:
Ultrasonographic detection of subclinical atherosclerosis improves cardiovascular risk stratification, but uncertainty persists about the most discriminative method to apply. In this study, we found that the "atherosclerosis burden score (ABS)", a novel straightforward ultrasonographic score that sums the number of carotid and femoral arterial bifurcations with plaques, significantly outperformed common carotid intima-media thickness, carotid mean/maximal thickness, and carotid/femoral plaque scores for the detection of coronary artery disease (CAD) (receiver operating characteristic (ROC) curve area under the curve (AUC) = 0.79; P = 0.027 to <0.001 with the other five US endpoints) in 203 patients undergoing coronary angiography. ABS was also more correlated with CAD extension (R = 0.55; P < 0.001). Furthermore, in a second group of 1128 patients without cardiovascular disease, ABS was weakly correlated with the European Society of Cardiology chart risk categories (R (2) = 0.21), indicating that ABS provided information beyond usual cardiovascular risk factor-based risk stratification. Pending prospective studies on hard cardiovascular endpoints, ABS appears as a promising tool in primary prevention.
Resumo:
Coronary artery disease (CAD) is a chronic process that evolves over decades and may culminate in myocardial infarction (MI). While invasive coronary angiography (ICA) is still considered the gold standard of imaging CAD, non-invasive assessment of both the vascular anatomy and myocardial perfusion has become an intriguing alternative. In particular, computed tomography (CT) and positron emission tomography (PET) form an attractive combination for such studies. Increased radiation dose is, however, a concern. Our aim in the current thesis was to test novel CT and PET techniques alone and in hybrid setting in the detection and assessment of CAD in clinical patients. Along with diagnostic accuracy, methods for the reduction of the radiation dose was an important target. The study investigating the coronary arteries of patients with atrial fibrillation (AF) showed that CAD may be an important etiology of AF because a high prevalence of CAD was demonstrated within AF patients. In patients with suspected CAD, we demonstrated that a sequential, prospectively ECG-triggered CT technique was applicable to nearly 9/10 clinical patients and the radiation dose was over 60% lower than with spiral CT. To detect the functional significance of obstructive CAD, a novel software for perfusion quantification, CarimasTM, showed high reproducibility with 15O-labelled water in PET, supporting feasibility and good clinical accuracy. In a larger cohort of 107 patients with moderate 30-70% pre-test probability of CAD, hybrid PET/CT was shown to be a powerful diagnostic method in the assessment of CAD with diagnostic accuracy comparable to that of invasive angiography and fractional flow reserve (FFR) measurements. A hybrid study may be performed with a reasonable radiation dose in a vast majority of the cases, improving the performance of stand-alone PET and CT angiography, particularly when the absolute quantification of the perfusion is employed. These results can be applied into clinical practice and will be useful for daily clinical diagnosis of CAD.
Resumo:
Lipotoxicity is a condition in which fatty acids (FAs) are not efficiently stored in adipose tissue and overflow to non-adipose tissue, causing organ damages. A defect of adipose tissue FA storage capability can be the primary culprit in the insulin resistance condition that characterizes many of the severe metabolic diseases that affect people nowadays. Obesity, in this regard, constitutes the gateway and risk factor of the major killers of modern society, such as cardiovascular disease and cancer. A deep understanding of the pathogenetic mechanisms that underlie obesity and the insulin resistance syndrome is a challenge for modern medicine. In the last twenty years of scientific research, FA metabolism and dysregulations have been the object of numerous studies. Development of more targeted and quantitative methodologies is required on one hand, to investigate and dissect organ metabolism, on the other hand to test the efficacy and mechanisms of action of novel drugs. The combination of functional and anatomical imaging is an answer to this need, since it provides more understanding and more information than we have ever had. The first purpose of this study was to investigate abnormalities of substrate organ metabolism, with special reference to the FA metabolism in obese drug-naïve subjects at an early stage of disease. Secondly, trimetazidine (TMZ), a metabolic drug supposed to inhibit FA oxidation (FAO), has been for the first time evaluated in obese subjects to test a whole body and organ metabolism improvement based on the hypothesis that FAO is increased at an early stage of the disease. A third objective was to investigate the relationship between ectopic fat accumulation surrounding heart and coronaries, and impaired myocardial perfusion in patients with risk of coronary artery disease (CAD). In the current study a new methodology has been developed with PET imaging with 11C-palmitate and compartmental modelling for the non-invasive in vivo study of liver FA metabolism, and a similar approach has been used to study FA metabolism in the skeletal muscle, the adipose tissue and the heart. The results of the different substudies point in the same direction. Obesity, at the an early stage, is associated with an impairment in the esterification of FAs in adipose tissue and skeletal muscle, which is accompanied by the upregulation in skeletal muscle, liver and heart FAO. The inability to store fat may initiate a cascade of events leading to FA oversupply to lean tissue, overload of the oxidative pathway, and accumulation of toxic lipid species and triglycerides, and it was paralleled by a proportional growth in insulin resistance. In subjects with CAD, the accumulation of ectopic fat inside the pericardium is associated with impaired myocardial perfusion, presumably via a paracrine/vasocrine effect. At the beginning of the disease, TMZ is not detrimental to health; on the contrary at the single organ level (heart, skeletal muscle and liver) it seems beneficial, while no relevant effects were found on adipose tissue function. Taken altogether these findings suggest that adipose tissue storage capability should be preserved, if it is not possible to prevent excessive fat intake in the first place.
Resumo:
Studies that consider polymorphisms within the apolipoprotein B (apo B) gene as risk factors for coronary artery disease (CAD) have reported conflicting results. The aim of the present study was to search for associations between two DNA RFLPs (XbaI and EcoRI) of the apo B gene and CAD diagnosed by angiography. In the present study we compared 116 Brazilian patients (92 men) with CAD (CAD+) to 78 control patients (26 men) without ischemia or arterial damage (CAD-). The allele frequencies at the XbaI (X) and EcoRI (E) sites did not differ between groups. The genotype distributions of CAD+ and CAD- patients were different (chi²(1) = 6.27, P = 0.012) when assigned to two classes (X-X-/E+E+ and the remaining XbaI/EcoRI genotypes). Multivariate logistic regression analysis showed that individuals with the X-X-/E+E+ genotype presented a 6.1 higher chance of developing CAD than individuals with the other XbaI/EcoRI genotypes, independently of the other risk factors considered (sex, tobacco consumption, total cholesterol, hypertension, and triglycerides). We conclude that the X-X-/E+E genotype may be in linkage disequilibrium with an unknown variation in the apo B gene or with a variation in another gene that affects the risk of CAD.
Resumo:
High levels of von Willebrand factor (vWF) have been associated with cardiovascular disease. The A allele of the -1185A/G polymorphism in the 5'-regulatory region of the vWF gene was associated with the highest plasma vWF levels in a normal population. To examine the association between -1185A/G polymorphism and coronary artery disease (CAD), 173 Brazilian Caucasian subjects submitted to coronary angiography were studied. Of these, 57 (33%) had normal coronary arteries (control group) and 116 (67%) had CAD (patient group). Plasma vWF levels were higher in patients (145 U/dl) than in controls (130 U/dl), but the differences were significant only for O blood group subjects. Polymerase chain reaction amplification of the 864-bp vWF promoter region followed by AccII restriction digestion was used to identify the -1185A/G genotypes. The -1185A allele frequency was 43.1% in patients and 44.7% in controls. Allele and genotype frequencies were not significantly different between patients and controls. No association was observed between the -1185A/G genotypes and plasma vWF levels in patients or controls. These results suggest that -1185A/G polymorphism is not an independent risk factor for CAD.
Resumo:
We examined the association of three established single nucleotide polymorphisms, IVS1-397T>C, IVS1-351A>G, and +261G>C, in the ESR1 gene with the prevalence and severity of coronary atherosclerosis in a southern Brazilian population of European ancestry. Three hundred and forty-one subjects (127 women and 214 men) with coronary artery disease (CAD) were classified as having significant disease (CAD+ patient group) when they showed 60% or more luminal stenosis in at least one coronary artery or major branch segment at angiography; patients with 10% or less luminal stenosis were considered to have minimal CAD (CAD- patient group). The control sample consisted of 142 subjects (79 women and 63 men) without significant disease, in whom coronary angiography to rule out the presence of asymptomatic CAD was not performed. The polymorphisms were investigated by polymerase chain reaction followed by restriction analyses. In the male sample, the +261G>C*C allele was more frequent in CAD+ than CAD- subjects (8 versus 1%, P = 0.024). Homozygosity for the C allele of the IVS1-397T>C polymorphism was also significantly associated with increased CAD severity (OR: 2.99; 95% CI = 1.35-6.63; P = 0.007). In agreement with previous findings, these results suggest that the IVS1-397T>C*C allele was associated with CAD severity independent of gender, whereas the association of the +261G>C variant with CAD was observed in males only. The relation between ESR1 variation and CAD may influence clinical decisions such as the use of hormone therapy, and additionally will be helpful to identify the genetic susceptibility determinants of cardiovascular disease development.
Resumo:
Hyperhomocystinemia has been related to an increased risk of cardiovascular disease in several studies. The C677T polymorphism for the gene that encodes the methylenetetrahydrofolate reductase enzyme (MTHFR) and low plasma folate levels are common causes of hyperhomocystinemia. Due to differences in nutritional patterns and genetic background among different countries, we evaluated the role of hyperhomocystinemia as a coronary artery disease (CAD) risk factor in a Brazilian population. The relation between homocysteine (Hcy) and the extent of CAD, measured by an angiographic score, was determined. A total of 236 patients referred for coronary angiography for clinical reasons were included. CAD was found in 148 (62.7%) patients and 88 subjects had normal or near normal arteries. Patients with CAD had higher Hcy levels [mean (SD)] than those without disease (14 (6.8) vs 12.5 (4.0) µM; P = 0.04). Hyperhomocystinemia (Hcy >17.8 µM) prevalence was higher in the CAD group: 31.1 vs 12.2% (P = 0.01). After adjustment for major risk factors, we found an independent association between hyperhomocystinemia and CAD (OR = 2.48; 95% CI = 1.02-6.14). Patients with a more advanced coronary score had a higher frequency of hyperhomocystinemia and tended to have higher mean Hcy levels. An inverse relation between plasma folate and Hcy levels was found (r = -0.14; P = 0.04). Individuals with the MTHFR C677T polymorphism had a higher prevalence of hyperhomocystinemia than those without the mutated allele. We conclude that hyperhomocystinemia is independently associated with CAD, with a positive association between Hcy level and disease severity.
Resumo:
Apolipoprotein E (apoE - e2, e3, e4 alleles) plays a role in the regulation of lipid metabolism, with the e4 considered to be a risk factor for coronary artery disease (CAD). We aimed to evaluate the apoE polymorphisms in Brazilians with CAD and their influence on the lipid profile and other risk factors (hypertension, diabetes mellitus, smoking). Two hundred individuals were examined: 100 patients with atherosclerosis confirmed by coronary angiography and 100 controls. Blood samples were drawn to determine apoE polymorphisms and lipid profile. As expected, the e3 allele was prevalent in the CAD (0.87) and non-CAD groups (0.81; P = 0.099), followed by the e4 allele (0.09 and 0.14, respectively; P = 0.158). The e3/3 (76 and 78%) and e3/4 (16 and 23%) were the most common genotypes for patients and controls, respectively. The lipid profile was altered in patients compared to controls (P < 0.05), independently of the e4 allele. However, in the controls this allele was prevalent in individuals with elevated LDL-cholesterol levels only (odds ratio = 2.531; 95% CI = 1.028-6.232). The frequency of risk factors was higher in the CAD group (P < 0.05), but their association with the lipid profile was not demonstrable in e4 carriers. In conclusion, the e4 allele is not associated with CAD or lipid profile in patients with atherosclerosis. However, its frequency in the non-CAD group is associated with increased levels of LDL-cholesterol, suggesting an independent effect of the e4 allele on lipid profile when the low frequency of other risk factors in this group is taken into account.
Resumo:
Endothelial function (EF) plays an important role in the onset and clinical course of atherosclerosis, although its relationship with the presence and extent of coronary artery disease (CAD) has not been well defined. We evaluated EF and the ST segment response to an exercise test in patients with a broad spectrum of CAD defined by coronary angiography. Sixty-two patients submitted to diagnostic catheterization for the evaluation of chest pain or ischemia in a provocative test were divided into three groups according to the presence and severity of atherosclerotic lesions (AL): group 1: normal coronaries (N = 19); group 2: CAD with AL <70% (N = 17); group 3: CAD with AL ≥70% (N = 26). EF was evaluated by the percentage of flow-mediated dilatation (%FMD) in the brachial artery during reactive hyperemia induced by occlusion of the forearm with a pneumatic cuff for 5 min. Fifty-four patients were subjected to an exercise test. Gender and age were not significantly correlated with %FMD. EF was markedly reduced in both groups with CAD (76.5 and 73.1% vs 31.6% in group 1) and a higher frequency of ischemic alterations in the ST segment (70.8%) was observed in the group with obstructive CAD with AL ≥70% during the exercise test. Endothelial dysfunction was observed in patients with CAD, irrespective of the severity of injury. A significantly higher frequency of ischemic alterations in the ST segment was observed in the group with obstructive CAD. EF and exercise ECG differed among the three groups and may provide complementary information for the assessment of CAD.