986 resultados para COMPOSITE SCAFFOLDS
Resumo:
The aims of this work were to investigate the conversion of a marine alga into hydroxyapatite (HA), and furthermore to design a composite bone tissue engineering scaffold comprising the synthesised HA within a porous bioresorbable polymer. The marine alga Phymatolithon calcareum, which exhibits a calcium carbonate honeycomb structure, with a natural architecture of interconnecting permeable pores (microporosity 4-11 mu m), provided the initial raw material for this study. The objective was to convert the alga into hydroxyapatite while maintaining its porous morphology using a sequential pyrolysis and chemical synthesis processes. Semi-quantitative XRD analysis of the post-hydrothermal material (pyrolised at 700-750 degrees C), indicated that the calcium phosphate (CaP) ceramic most likely consisted of a calcium carbonate macroporous lattice, with hydroxyapatite crystals on the surface of the macropores. Cell visibility (cytotoxicity) investigations of osteogenic cells were conducted on the CaP ceramic (i.e., the material post-hydrothermal analysis) which was found to be non-cytotoxic and displayed good biocompatibility when seeded with MG63 cells. Furthermore, a hot press scaffold fabrication technique was developed to produce a composite scaffold of CaP (derived from the marine alga) in a polycaprolactone (PCL) matrix. A salt leaching technique was further explored to introduce macroporosity to the structure (50-200 mu m). Analysis indicated that the scaffold contained both micro/macroporosity and mechanical strength, considered necessary for bone tissue engineering applications. (C) 2008 Published by Elsevier B.V.
Resumo:
Bone morphogenetic proteins (BMPs) have been widely investigated for their clinical use in bone repair and it is known that a suitable carrier matrix to deliver them is essential for optimal bone regeneration within a specific defect site. Fused deposited modeling (FDM) allows for the fabrication of medical grade poly 3-caprolactone/tricalcium phosphate (mPCL–TCP) scaffolds with high reproducibility and tailor designed dimensions. Here we loaded FDM fabricated mPCL–TCP/collagen scaffolds with 5 mg recombinant human (rh)BMP-2 and evaluated bone healing within a rat calvarial critical-sized defect. Using a comprehensive approach, this study assessed the newly regenerated bone employing microcomputed tomography (mCT), histology/histomorphometry, and mechanical assessments. By 15 weeks, mPCL–TCP/collagen/rhBMP-2 defects exhibited complete healing of the calvarium whereas the non- BMP-2-loaded scaffolds showed significant less bone ingrowth, as confirmed by mCT. Histomorphometry revealed significantly increased bone healing amongst the rhBMP-2 groups compared to non-treated scaffolds at 4 and 15 weeks, although the % BV/TV did not indicate complete mineralisation of the entire defect site. Hence, our study confirms that it is important to combine microCt and histomorphometry to be able to study bone regeneration comprehensively in 3D. A significant up-regulation of the osteogenic proteins, type I collagen and osteocalcin, was evident at both time points in rhBMP-2 groups. Although mineral apposition rates at 15 weeks were statistically equivalent amongst treatment groups, microcompression and push-out strengths indicated superior bone quality at 15 weeks for defects treated with mPCL–TCP/collagen/rhBMP-2. Consistently over all modalities, the progression of healing was from empty defect < mPCL–TCP/collagen < mPCL–TCP/collagen/rhBMP-2, providing substantiating data to support the hypothesis that the release of rhBMP-2 from FDM-created mPCL–TCP/collagen scaffolds is a clinically relevant approach to repair and regenerate critically-sized craniofacial bone defects. Crown Copyright 2008 Published by Elsevier Ltd. All rights reserved.
Resumo:
Our strategy entails investigating the influence of varied concentrations (0, 10, 100 and 1000 ng/ml) of human recombinant bone morphogenetic protein-2 (rhBMP-2) on the osteogenic expression of canine osteoblasts, seeded onto poly-caprolactone 20% tricalcium phosphate (PCL-TCP) scaffolds in vitro. Biochemical assay revealed that groups with rhBMP-2 displayed an initial burst in cell growth that was not dose-dependent. However, after 13 days, cell growth declined to a value similar to control. Significantly less cell growth was observed for construct with 1000 ng/ml of rhBMP-2 from 20 days onwards. Confocal microscopy confirmed viability of osteoblasts and at day 20, groups seeded with rhBMP-2 displayed heightened cell death as compared to control. Phase contrast and scanning electron microscopy revealed that osteoblasts heavily colonized surfaces, rods and pores of the PCL-TCP scaffolds. This was consistent for all groups. Finally, Von Kossa and osteocalcin assays demonstrated that cells from all groups maintained their osteogenic phenotype throughout the experiment. Calcification was observed as early as four days after stimulation for groups seeded with rhBMP-2. In conclusion, rhBMP-2 seems to enhance the differentiated function of canine osteoblasts in a non-dose dependent manner. This resulted in accelerated mineralization, followed by death of osteoblasts as they underwent terminal differentiation. Notably, PCL-TCP scaffolds seeded only with canine osteoblasts could sustain excellent osteogenic expression in vitro. Hence, the synergy of PCL with bioactive TCP and rhBMP-2 in a novel composite scaffold, could offer an exciting approach for bone regeneration.
Resumo:
Smart matrices are required in bone tissueengineered grafts that provide an optimal environment for cells and retain osteo-inductive factors for sustained biological activity. We hypothesized that a slow-degrading heparin-incorporated hyaluronan (HA) hydrogel can preserve BMP-2; while an arterio–venous (A–V) loop can support axial vascularization to provide nutrition for a bioartificial bone graft. HA was evaluated for osteoblast growth and BMP-2 release. Porous PLDLLA–TCP–PCL scaffolds were produced by rapid prototyping technology and applied in vivo along with HA-hydrogel, loaded with either primary osteoblasts or BMP-2. A microsurgically created A–V loop was placed around the scaffold, encased in an isolation chamber in Lewis rats. HA-hydrogel supported growth of osteoblasts over 8 weeks and allowed sustained release of BMP-2 over 35 days. The A–V loop provided an angiogenic stimulus with the formation of vascularized tissue in the scaffolds. Bone-specific genes were detected by real time RT-PCR after 8 weeks. However, no significant amount of bone was observed histologically. The heterotopic isolation chamber in combination with absent biomechanical stimulation might explain the insufficient bone formation despite adequate expression of bone-related genes. Optimization of the interplay of osteogenic cells and osteo-inductive factors might eventually generate sufficient amounts of axially vascularized bone grafts for reconstructive surgery.
Resumo:
It is predicted that with increased life expectancy in the developed world, there will be a greater demand for synthetic materials to repair or regenerate lost, injured or diseased bone (Hench & Thompson 2010). There are still few synthetic materials having true bone inductivity, which limits their application for bone regeneration, especially in large-size bone defects. To solve this problem, growth factors, such as bone morphogenetic proteins (BMPs), have been incorporated into synthetic materials in order to stimulate de novo bone formation in the center of large-size bone defects. The greatest obstacle with this approach is that the rapid diffusion of the protein from the carrier material, leading to a precipitous loss of bioactivity; the result is often insufficient local induction or failure of bone regeneration (Wei et al. 2007). It is critical that the protein is loaded in the carrier material in conditions which maintains its bioactivity (van de Manakker et al. 2009). For this reason, the efficient loading and controlled release of a protein from a synthetic material has remained a significant challenge. The use of microspheres as protein/drug carriers has received considerable attention in recent years (Lee et al. 2010; Pareta & Edirisinghe 2006; Wu & Zreiqat 2010). Compared to macroporous block scaffolds, the chief advantage of microspheres is their superior protein-delivery properties and ability to fill bone defects with irregular and complex shapes and sizes. Upon implantation, the microspheres are easily conformed to the irregular implant site, and the interstices between the particles provide space for both tissue and vascular ingrowth, which are important for effective and functional bone regeneration (Hsu et al. 1999). Alginates are natural polysaccharides and their production does not have the implicit risk of contamination with allo or xeno-proteins or viruses (Xie et al. 2010). Because alginate is generally cytocompatible, it has been used extensively in medicine, including cell therapy and tissue engineering applications (Tampieri et al. 2005; Xie et al. 2010; Xu et al. 2007). Calcium cross-linked alginate hydrogel is considered a promising material as a delivery matrix for drugs and proteins, since its gel microspheres form readily in aqueous solutions at room temperature, eliminating the need for harsh organic solvents, thereby maintaining the bioactivity of proteins in the process of loading into the microspheres (Jay & Saltzman 2009; Kikuchi et al. 1999). In addition, calcium cross-linked alginate hydrogel is degradable under physiological conditions (Kibat PG et al. 1990; Park K et al. 1993), which makes alginate stand out as an attractive candidate material for the protein carrier and bone regeneration (Hosoya et al. 2004; Matsuno et al. 2008; Turco et al. 2009). However, the major disadvantages of alginate microspheres is their low loading efficiency and also rapid release of proteins due to the mesh-like networks of the gel (Halder et al. 2005). Previous studies have shown that a core-shell structure in drug/protein carriers can overcome the issues of limited loading efficiencies and rapid release of drug or protein (Chang et al. 2010; Molvinger et al. 2004; Soppimath et al. 2007). We therefore hypothesized that introducing a core-shell structure into the alginate microspheres could solve the shortcomings of the pure alginate. Calcium silicate (CS) has been tested as a biodegradable biomaterial for bone tissue regeneration. CS is capable of inducing bone-like apatite formation in simulated body fluid (SBF) and its apatite-formation rate in SBF is faster than that of Bioglass® and A-W glass-ceramics (De Aza et al. 2000; Siriphannon et al. 2002). Titanium alloys plasma-spray coated with CS have excellent in vivo bioactivity (Xue et al. 2005) and porous CS scaffolds have enhanced in vivo bone formation ability compared to porous β-tricalcium phosphate ceramics (Xu et al. 2008). In light of the many advantages of this material, we decided to prepare CS/alginate composite microspheres by combining a CS shell with an alginate core to improve their protein delivery and mineralization for potential protein delivery and bone repair applications
Resumo:
This study demonstrates the feasibility of additive manufactured poly(3-caprolactone)/silanized tricalcium phosphate (PCL/TCP(Si)) scaffolds coated with carbonated hydroxyapatite (CHA)-gelatin composite for bone tissue engineering. In order to reinforce PCL/TCP scaffolds to match the mechanical properties of cancellous bone, TCP has been modified with 3-glycidoxypropyl trimethoxysilane (GPTMS) and incorporated into PCL to synthesize a PCL/TCP(Si) composite. The successful modification is confirmed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) analysis. Additive manufactured PCL/TCP(Si) scaffolds have been fabricated using a screw extrusion system (SES). Compression testing demonstrates that both the compressive modulus and compressive yield strength of the developed PCL/TCP(Si) scaffolds fall within the lower ranges of mechanical properties for cancellous bone, with a compressive modulus and compressive yield strength of 6.0 times and 2.3 times of those of PCL/TCP scaffolds, respectively. To enhance the osteoconductive property of the developed PCL/TCP(Si) scaffolds, a CHA-gelatin composite has been coated onto the scaffolds via a biomimetic co-precipitation process, which is verified by using scanning electron microscopy (SEM) and XPS. Confocal laser microscopy and SEM images reveal a most uniform distribution of porcine bone marrow stromal cells (BMSCs) and cellsheet accumulation on the CHA-gelatin composite coated PCL/TCP(Si) scaffolds. The proliferation rate of BMSCs on the CHA-gelatin composite coated PCL/TCP(Si) scaffolds is 2.0 and 1.4 times higher compared to PCL/TCP(Si) and CHA coated PCL/TCP(Si) scaffolds, respectively, by day 10. Furthermore, the reverse transcription polymerase chain reaction (RT-PCR) and western blot analyses reveal that CHA-gelatin composite coated PCL/TCP(Si) scaffolds stimulate osteogenic differentiation of BMSCs the most compared to the other scaffolds. In vitro results of SEM, confocal microscopy and proliferation rate also show that there is no detrimental effect of GPTMS modification on biocompatibility of the scaffolds.
Resumo:
Nanocomposites are recently known to be among the most successful materials in biomedical applications. In this work we sought to fabricate fibrous scaffolds which can mimic the extra cellular matrix of cartilaginous connective tissue not only to a structural extent but with a mechanical and biological analogy. Poly(3-hydroxybutyrate) (P3HB) matrices were reinforced with 5, 10 and 15 %wt hydroxyapatite (HA) nanoparticles and electrospun into nanocomposite fibrous scaffolds. Mechanical properties of each case were compared with that of a P3HB scaffold produced in the same processing condition. Spectroscopic and morphological observations were used for detecting the interaction quality between the constituents. Nanoparticles rested deep within the fibers of 1 μm in diameter. Chemical interactions of hydrogen bonds linked the constituents through the interface. Maximum elastic modulus and mechanical strength was obtained with the presence of 5%wt hydroxyapatite nanoparticles. Above 10%wt, nanoparticles tended to agglomerate and caused the entity to lose its mechanical performance; however, viscoelasticity interfered at this concentration and lead to a delayed failure. In other words, higher elongation at break and a massive work of rupture was observed at 10%wt.
Resumo:
Electrostatic spinning or electrospinning is a fiber spinning technique driven by a high-voltage electric field that produces fibers with diameters in a submicrometer to nanometer range.1 Nanofibers are typical one-dimensional colloidal objects with an increased tensile strength, whose length can achieve a few kilometers and the specific surface area can be 100 m2 g–1 or higher.2 Nano- and microfibers from biocompatible polymers and biopolymers have received much attention in medical applications3 including biomedical structural elements (scaffolding used in tissue engineering,2,4–6 wound dressing,7 artificial organs and vascular grafts8), drug and vaccine delivery,9–11 protective shields in speciality fabrics, multifunctional membranes, etc. Other applications concern superhydrophobic coatings,12 encapsulation of solid materials,13 filter media for submicron particles in separation industry, composite reinforcement and structures for nano-electronic machines.
Resumo:
Graphene-based polymer nanocomposites are being studied for biomedical applications. Polymer nanocomposites can be processed differently to generate planar two-dimensional (2D) substrates and porous three-dimensional (3D) scaffolds. The objective of this work was to investigate potential differences in biological response to graphene in polymer composites in the form of 2D substrates and 3D scaffolds. Polycaprolactone (PCL) nanocomposites were prepared by incorporating 1% of graphene oxide (GO) and reduced graphene oxide (RGO). GO increased modulus and strength of PCL by 44 and 22% respectively, whereas RGO increased modulus and strength by 22 and 16%, respectively. RGO increased the water contact angle of PCL from 81 degrees to 87 degrees whereas GO decreased it to 77 degrees. In 2D, osteoblast proliferated 15% more on GO composites than on PCL whereas RGO composite showed 17% decrease in cell proliferation, which may be attributed to differences in water wettability. In 3D, initial cell proliferation was markedly retarded in both GO (36% lower) and RGO (55% lower) composites owing to increased roughness due to the presence of the protruding nanoparticles. Cells organized into aggregates in 3D in contrast to spread and randomly distributed cells on 2D discs due to the macro-porous architecture of the scaffolds. Increased cell-cell contact and altered cellular morphology led to significantly higher mineralization in 3D. This study demonstrates that the cellular response to nanoparticles in composites can change markedly by varying the processing route and has implications for designing orthopedic implants such as resorbable fracture fixation devices and tissue scaffolds using such nanocomposites. (c) 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 732-749, 2016.
Resumo:
Tissue engineering offers a paradigm shift in the treatment of back pain. Engineered intervertebral discs could replace degenerated tissue and overcome the limitations of current treatments, which substantially alter the biomechanical properties of the spine. The centre of the disc, the nucleus pulposus, is an amorphous gel with a large bound water content and it can resist substantial compressive loads. Due to similarities in their compositions, hydrogels have frequently been considered as substitutes for the nucleus pulposus. However, there has been limited work characterising the time-dependent mechanical behaviour of hydrogel scaffolds for nucleus pulposus tissue engineering. Poroelastic behaviour, which plays a key role in nutrient transport, is of particular importance. Here, we investigate the time-dependent mechanical properties of gelatin and agar hydrogels and of gelatin-agar composites. The time-dependent properties of these hydrogels are explored using viscoelastic and poroelastic frameworks. Several gel formulations demonstrate comparable equilibrium elastic behaviour to the nucleus pulposus under unconfined compression, but permeability values that are much greater than those of the native tissue. A range of time-dependent responses are observed in the composite gels examined, presenting the opportunity for targeted design of custom hydrogels with combinations of mechanical properties optimized for tissue engineering applications. © 2011 Elsevier Ltd.
Resumo:
A number of animals have evolved to produce silk-based composite materials for a variety of task-specific applications. The review initially focuses on the composite structure of silk fibers produced naturally by silkworms and spiders, followed by the preparation and applications of man-made composite materials (including fibers, films, foams, gels and particulates) incorporating silk proteins in combination with other polymers (both natural and synthetic) and/or inorganic particles.
Resumo:
In this study, calcium phosphate (CaP) powders were blended with a three-dimensional printing (3DP) calcium sulfate (CaSO4)-based powder and the resulting composite powders were printed with a water-based binder using the 3DP technology. Application of a water-based binder ensured the manufacture of CaP:CaSO4 constructs on a reliable and repeatable basis, without long term damage of the printhead. Printability of CaP:CaSO4 powders was quantitatively assessed by investigating the key 3DP process parameters, i.e. in-process powder bed packing, drop penetration behavior and the quality of printed solid constructs. Effects of particle size, CaP:CaSO4 ratio and CaP powder type on the 3DP process were considered. The drop penetration technique was used to reliably identify powder formulations that could be potentially used for the application of tissue engineered bone scaffolds using the 3DP technique. Significant improvements (p < 0.05) in the 3DP process parameters were found for CaP (30-110 μm):CaSO4 powders compared to CaP (< 20 μm):CaSO4 powders. Higher compressive strength was obtained for the powders with the higher CaP:CaSO4 ratio. Hydroxyapatite (HA):CaSO4 powders showed better results than beta-tricalcium phosphate (β-TCP):CaSO4 powders. Solid and porous constructs were manufactured using the 3DP technique from the optimized CaP:CaSO4 powder formulations. High-quality printed constructs were manufactured, which exhibited appropriate green compressive strength and a high level of printing accuracy.
Resumo:
This study assess the effects of bioceramic and poly(lactic-co-glycolic acid) composite (BCP/PLGA) on the viability of cultured macrophages and human dental pulp fibroblasts, and we sought to elucidate the temporal profile of the reaction of pulp capping with a composite of bioceramic of calcium phosphate and biodegradable polymer in the progression of delayed dentine bridge after (30 and 60 days) in vivo. Histological evaluation of inflammatory infiltrate and dentin bridge formation were performed after 30 and 60 days. There was similar progressive fibroblast growth in all groups and the macrophages showed viability. The in vivo study showed that of the three experimental groups: BCP/PLGA composite, BCP and calcium hydroxide (Ca(OH)(2)) dentin bridging was the most prevalent (90 %) in the BCP/PLGA composite after 30 days, mild to moderate inflammatory response was present throughout the pulp after 30 days. After 60 days was observed dentine bridging in 60 % and necrosis in 40 %, in both groups. The results indicate that understanding BCP/PLGA composite is biocompatible and by the best tissue response as compared to calcium hydroxide in direct pulp capping may be important in the mechanism of delayed dentine bridge after 30 and 60 days.