1000 resultados para COMPACT GROUPS
Resumo:
We have redefined group membership of six southern galaxy groups in the local universe (mean cz < 2000 km s(-1)) based on new redshift measurements from our recently acquired Anglo-Australian Telescope 2dF spectra. For each group, we investigate member galaxy kinematics, substructure, luminosity functions and luminosity-weighted dynamics. Our calculations confirm that the group sizes, virial masses and luminosities cover the range expected for galaxy groups, except that the luminosity of NGC 4038 is boosted by the central starburst merger pair. We find that a combination of kinematical, substructural and dynamical techniques can reliably distinguish loose, unvirialized groups from compact, dynamically relaxed groups. Applying these techniques, we find that Dorado, NGC 4038 and NGC 4697 are unvirialized, whereas NGC 681, NGC 1400 and NGC 5084 are dynamically relaxed.
Resumo:
MSC 2010: 30C60
Resumo:
The real-quaternionic indicator, also called the $\delta$ indicator, indicates if a self-conjugate representation is of real or quaternionic type. It is closely related to the Frobenius-Schur indicator, which we call the $\varepsilon$ indicator. The Frobenius-Schur indicator $\varepsilon(\pi)$ is known to be given by a particular value of the central character. We would like a similar result for the $\delta$ indicator. When $G$ is compact, $\delta(\pi)$ and $\varepsilon(\pi)$ coincide. In general, they are not necessarily the same. In this thesis, we will give a relation between the two indicators when $G$ is a real reductive algebraic group. This relation also leads to a formula for $\delta(\pi)$ in terms of the central character. For the second part, we consider the construction of the local Langlands correspondence of $GL(2,F)$ when $F$ is a non-Archimedean local field with odd residual characteristics. By re-examining the construction, we provide new proofs to some important properties of the correspondence. Namely, the construction is independent of the choice of additive character in the theta correspondence.
Resumo:
A counterpart of the Mackey–Arens Theorem for the class of locally quasi-convex topological Abelian groups (LQC-groups) was initiated in Chasco et al. (Stud Math 132(3):257–284, 1999). Several authors have been interested in the problems posed there and have done clarifying contributions, although the main question of that source remains open. Some differences between the Mackey Theory for locally convex spaces and for locally quasi-convex groups, stem from the following fact: The supremum of all compatible locally quasi-convex topologies for a topological abelian group G may not coincide with the topology of uniform convergence on the weak quasi-convex compact subsets of the dual groupG∧. Thus, a substantial part of the classical Mackey–Arens Theorem cannot be generalized to LQC-groups. Furthermore, the mentioned fact gives rise to a grading in the property of “being a Mackey group”, as defined and thoroughly studied in Díaz Nieto and Martín-Peinador (Proceedings in Mathematics and Statistics 80:119–144, 2014). At present it is not known—and this is the main open question—if the supremum of all the compatible locally quasi-convex topologies on a topological group is in fact a compatible topology. In the present paper we do a sort of historical review on the Mackey Theory, and we compare it in the two settings of locally convex spaces and of locally quasi-convex groups. We point out some general questions which are still open, under the name of Problems.
Resumo:
This chapter is a condensation of a guide written by the chapter authors for both university teachers and students (Fowler et al., 2006). All page references given in this chapter are to this guide, unless otherwise stated. University students often work in groups. It may be a formal group (i.e. one that has been formed for a group presentation, writing a report, or completing a project) or an informal group (i.e. some students have decided to form a study group or undertake research together). Whether formal or informal, this chapter aims to make working in groups easier for you. Health care professionals also often work in groups. Yes, working in groups will extend well beyond your time at university. In fact, the skills and abilities to work effectively in groups are some of the most sought-after attributes in health care professionals. It seems obvious, then, that taking the opportunity to develop and enhance your skills and abilities for working in groups is a wise choice.
Resumo:
We examined differences in response latencies obtained during a validated video-based hazard perception driving test between three healthy, community-dwelling groups: 22 mid-aged (35-55 years), 34 young-old (65-74 years), and 23 old-old (75-84 years) current drivers, matched for gender, education level, and vocabulary. We found no significant difference in performance between mid-aged and young-old groups, but the old-old group was significantly slower than the other two groups. The differences between the old-old group and the other groups combined were independently mediated by useful field of view (UFOV), contrast sensitivity, and simple reaction time measures. Given that hazard perception latency has been linked with increased crash risk, these results are consistent with the idea that increased crash risk in older adults could be a function of poorer hazard perception, though this decline does not appear to manifest until age 75+ in healthy drivers.