867 resultados para COLONY GENETIC STRUCTURE
Resumo:
National Natural Science Foundation of China (NSFC) [2007CB411600, 30530120]
Resumo:
Redfin culter (Culter erythropterus) is a small lethic freshwater fish and widely distributed in the adjacent lakes of the Yangtze River of China. Five microsatellite loci were applied to investigate the genetic variation and population structure of redfin culter from seven lakes in the middle-and-lower reaches of the Yangtze River. The gene diversity was high among the populations (H > 0.9), the average number of alleles among seven populations was low with a range from 2.00 to 3.87. The mean observed (H-O) and expected (H-E) heterozygosity ranged from 0.111 to 0.419 and from 0.162 to 0.750, respectively. Significant deviations from Hardy-Weinberg Equilibrium expectation were found in 50% of the total locus-population combination tests in which heterozygote deficits were apparent. The analysis of molecular variance (AMOVA) indicated that the percentage of variance among and within these populations were 6.18 and 93.82, respectively. The Fst values (0.062, P < 0.001) among studied populations indicated that there were significant genetic differentiations among redfin culture populations from the scattered lakes with different connections to the Yangtze River. These results are useful for the evaluation and conservation of small freshwater fishes. The factors that may be involved in low intra-population polymorphism and the pattern of the population genetic structure of redfin culter from the Yangtze River were discussed.
Resumo:
Although the peritrichous ciliate Carchesium polypinum is common in freshwater, its population genetic structure is largely unknown. We used inter-simple sequence repeat (ISSR) fingerprinting to analyze the genetic structure of 48 different isolates of the species from four lakes in Wuhan, central China. Using eight polymorphic primers, 81 discernible DNA fragments were detected, among which 76 (93.83%) were polymorphic, indicating high genetic diversity at the isolate level. Further, Nei's gene diversity (h) and Shannon's Information index (I) between the different isolates both revealed a remarkable genetic diversity, higher than previously indicated by their morphology. At the same time, substantial gene flow was found. So the main factors responsible for the high level of diversity within populations are probably due to conjugation (sexual reproduction) and wide distribution of swarmers. Analysis of molecular variance (AMOVA) showed that there was low genetic differentiation among the four populations probably due to common ancestry and flooding events. The cluster analysis and principal component analysis (PCA) suggested that genotypes isolated from the same lake displayed a higher genetic similarity than those from different lakes. Both analyses separated C. polypinum isolates into subgroups according to the geographical locations. However, there is only a weak positive correlation between the genetic distance and geographical distance, suggesting a minor effect of geographical distance on the distribution of genetic diversity between populations of C. polypinum at the local level. In conclusion, our studies clearly demonstrated that a single morphospecies may harbor high levels of genetic diversity, and that the degree of resolution offered by morphology as a marker for measuring distribution patterns of genetically distinct entities is too low.
Resumo:
Genetic variation and phylogenetic relationship of Leiocassis longirostris populations from the Yangtze River were investigated at mitochondrial DNA level. The samples were collected from the upstream and mid-downstream of the Yangtze River. Three mitochondrial DNA fragments, ND5/6, cytochrome b (Cyt b) and control region (D-loop), were amplified and then digested by 10 restriction endonucleases. Twenty-three D-loop fragments randomly selected were sequenced. Digestion patterns of ND5/6 by AluI and HaeIII, D-loop by HinfI and RsaI, and Cyt b by HaeIII were polymorphic. Ten and eighteen haplotypes were obtained from RFLP data and sequence data, respectively. The individuals from upstream and mid-downstream of the Yangtze River were apparently divided into two groups. The average genetic distance was 0.008 and 0.010 according to the two data. Low diversities and decreasing abundance indicated that Leiocassis longirostris may be in severe danger and reasonable measures of fishery management should be taken.
Resumo:
Ancherythroculter nigrocauda is a cyprinid fish endemic to the upper reaches of the Yangtze River, which has been reported to have 2 or 3 chambers to its air bladder. Morphological studies showed no differences between individuals with different types of air bladder, but did demonstrate geographical differences from different sources. After the completion of the Three Gorges Dam, it was expected that the population of this species would decrease, but artificial breeding and stocking is under consideration to protect this species from extinction. In the present study, mtDNA cytochrome b gene sequences were determined and analyzed for A. nigrocauda samples of different morphotypes and sources to identify their genetic differentiations, and thereby guide plans for the artificial propagation and conservation of this species. Haplotype diversity index values (h) and nucleotide diversity values (pi) for all the populations were found to be high indicating their high level genetic diversity. An analysis of molecular variance identified no differentiation among the studied populations. Therefore, we suggested that the individuals of different morphological types and geographical sources belong to the same species. To maintain its high level genetic diversity, it mill he necessary to use large and diverse sources of parental fish for artificial reproduction.
Resumo:
Understanding the population genetic structure is a prerequisite for conservation of a species. The degree of genetic variability characteristic of the mitochondrial DNA control region has been widely exploited in studies of population genetic structure and can be useful in identifying meaningful population subdivisions. To estimate the genetic profile of the Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis), an endangered freshwater population endemic to China, the complete mtDNA control region was examined in 39 individuals belonging to seven different stocks inhabiting the middle and lower reaches of the Yangtze River. Very low genetic diversity was found (nucleotide diversity 0.0011 +/- 0.0002 and haplotypic diversity 0.65 +/- 0.05). The mtDNA genetic pattern of the Yangtze population appears to indicate a founder event in its evolutionary history and to support the marine origin for this population. Analyses by F-st and Phi(st) yielded statistically significant population genetic structure (F-st = 0.44, P < 0.05; phi(st) = 0.36, P < 0.05). These results may have significant implications for the management and conservation of the Yangtze finless porpoise in the future.
Resumo:
Amplified fragment length polymorphism (AFLP) was used to analyse the genetic structure of 45 individuals of Gymnocypris przewalskii (Kessler, 1876), an endangered and state-protected rare fish species, from three areas [the Heima (HM), Buha (BH) and Shaliu rivers (SL), all draining into Qinghai Lake]. A total of 563 polymorphic loci were detected. The HM, BH and SL populations have 435, 433 and 391 loci, respectively (Zhu and Wu, 1975), which account for 77.26%, 76.91% and 69.45% of the total number of polymorphic loci of each population, respectively. The Nei indices of genetic diversities (H) of the three populations were calculated to be 0.2869 (HM), 0.2884 (BH) and 0.2663 (SL), respectively. Their Shannon informative indices are 0.4244, 0.4251 and 0.3915, respectively. Research results show that the mean genetic distance between HM and BH is the smallest (0.0511), between BH and SL is the second shortest (0.0608), and between HM and SL is the largest (0.0713), with the mean genetic distance among the three populations being over 0.05. Data mentioned above indicate that the three populations have a certain genetic differentiation. The total genetic diversity (H-t = 0.3045) and the mean value of genetic diversity within the population (H-s = 0.2786) indicate that the variations have mainly come from within the population.
Resumo:
The sequencing analysis of the mitochondrial DNA control region (mtCR DNA) was performed to assess the genetic divergence and population structure of the Chinese sucker Myxocyprinus asiaticus (Cypriniformes Catostomidae) using four sample lots from natural populations of the Yangtze River. The mtCR DNA sequences of approximately 920 base pairs were obtained. A total of 223 nucleotide positions were polymorphic, and these defined 39 haplotypes. Of the 39 haplotypes, 37 (90%) were not shared, and among the populations as a whole there was little sharing of haplotypes. The average haplotype diversity (0.958) and the average nucleotide diversity (0.052) indicated a higher level of genetic diversity of Chinese sucker through the river. Analysis of molecular variation (AMOVA) of data revealed significant partitioning of variance (P<0.001) among populations (60.29%), and within populations (39.71%). The topology according to the neighbor joining and maximum parsimony methods showed mosaic composition of the 39 haplotypes, suggesting that the populations wore not completely divergent. The pairwise F statistic values, however, indicated that the population structuring existed to some extent among the geographic populations. There was a positive relationship between the aquatic distance and the genetic distance (Fst) among the populations (P<0.05). Based on our data, it is suggested that genetic drift, gene flow, and stochastic events are the possible factors influencing the population structure and genetic variation.
Resumo:
The population genetic structure of the crimson snapper Lutjanus erythropterus in East Asia was examined with a 427-bp hypervariable portion of the mtDNA control region. A total of 262 samples were collected and 75 haplotypes were obtained. Neutrality tests (Tajima's and Fu's) suggested that Lutjanus erythropterus in East Asia had experienced a bottleneck followed by population expansion since the late Pleistocene. Despite the low phylogeographic structures in mtDNA haplotypes, a hierarchical examination of populations in 11 localities from four geographical regions using analysis of molecular variance (AMOVA) indicated significant genetic differentiation among regions (Phi(CT) = 0.08564, p < 0.01). Limited gene flow between the eastern region (including a locality in the western Pacific Ocean and two localities in the East Sea) and three geographic regions of the South China Sea largely contributed to the genetic subdivision. However, comparisons among three geographic regions of the South China Sea showed little to no genetic difference. Populations of Lutjanus erythropterus in East Asia are inferred to be divided into two major groups: an eastern group, including populations of the western Pacific Ocean and the East Sea, and a South China Sea group, consisting of populations from northern Malaysia to South China. The results suggest that fishery management should reflect the genetic differentiation and diversity in East Asia. (c) 2006 International Council for the Exploration of the Sea. Published by Elsevier Ltd. All rights reserved.
Resumo:
Sargassum muticum is important in maintaining the structure and function of littoral ecosystems, and is used in aquaculture and alginate production, however, little is known about its population genetic attributes. In this study, random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers were used to investigate the genetic structure of four populations of S. muticum and one outgroup of S. fusiforme (Harv.) Setchell from Shandong peninsula of China. The selected 24 RAPD primers and 19 ISSR primers amplified 164 loci and 122 loci, respectively. Estimates of genetic diversity with different indicators (P%, percentage of polymorphic loci; H, the expected heterozygosity; I, Shannon's information index) revealed low or moderate level of genetic variations within each S. muticum population, and a high level of genetic differentiations were determined with pairwise unbiased genetic distance (D) and fixation index (F-ST ) among the populations. The Mantel test showed that two types of matrices of D and F-ST were highly correlated whether from RAPD (r = 0.9706, P = 0.009) or ISSR data (r = 0.9161, P = 0.009). Analysis of molecular variance (AMOVA) was conducted to apportion the variations among and within the S. muticum populations. It indicated that variations among populations were higher than those within populations, being 55.82% verse 44.18% by RAPD and 55.21% verse 44.79% by ISSR, respectively. Furthermore, the Mantel test suggested that genetic differentiations among populations were related to the geographical distances (r > 0.6), namely, conformed to the IBD (isolation by distance) model, as expected from UPGMA (unweighted pair group method with arithmetic averages) cluster analysis. On the whole, the high genetic structuring among the four S. muticum populations along the distant locations was clearly indicated in RAPD and ISSR analyses (r > 0.9, P < 0.05) in our study.
Resumo:
Genetic variation of four populations of Sargassum thunbergii (Mert.) O. Kuntze and one outgroup of S. fusiforme (Harv.) Setchell from Shandong peninsula of China was studied with random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers. A total of 28 RAPD primers and 19 ISSR primers were amplified, showing 174 loci and 125 loci, respectively. Calculation of genetic diversity with different indicators (P%, percentage of polymorphic loci; H, the expected heterozygosity; I, Shannon's information index) revealed low or moderate levels of genetic variations within each S. thunbergii population. High genetic differentiations were determined with pairwise Nei's unbiased genetic distance (D) and fixation index (F-ST) between the populations. The Mantel test showed that two types of matrices of D and FST were highly correlated, whether from RAPD or ISSR data, r=0.9310 (P = 0.008) and 0.9313 (P=0.009) respectively. Analysis of molecular variance (AMOVA) was used to apportion the variations between and within the S. thunbergii populations. It indicated that the variations among populations were higher than those within populations, being 57.57% versus 42.43% by RAPD and 59.52% versus 40.08% by ISSR, respectively. Furthermore, the Mantel test suggested that the genetic differentiations between the four populations were related to the geographical distances (r > 0.5), i.e., they conformed to the IBD (isolation by distance) model, as expected from UPGMA (unweighted pair group method with arithmetic averages) cluster analysis. As a whole, the high genetic structuring between the four S. thunbergii populations along distant locations was clearly indicated in the RAPD and ISSR analyses (r > 0.8) in our study.
Resumo:
Three F-1 families of the bay scallop, Argopecten irradians, were produced from one, two and 10 individuals. The genetic changes in these populations, which suffered recent and different levels of bottleneck, were analysed using amplified fragment length polymorphism (AFLP) techniques. In the parental stock, a total of 330 bands were detected using seven AFLP primer pairs, and 70% of the loci were polymorphic. All F-1 groups had a significantly lower proportion of polymorphic loci when compared with the initial stock, and loss of the rare loci and reduction in heterozygosity both occurred. The progeny of the larger population (i.e., N=10) exhibited a lesser amount of genetic differentiation compared with the progeny from N=2, which showed lesser differentiation than progeny from N=1. The effective population sizes (N-e) in N=1, 2 and 10 were estimated as 1.50, 1.61 and 2.49. Based on regression analysis, we recommend that at least 340 individuals be used in hatchery populations to maintain genetic variation.
Resumo:
The origin of eusociality in haplo-diploid organisms such as Hymenoptera has been mostly explained by kin selection. However, several studies have uncovered decreased relatedness values within colonies, resulting primarily from multiple queen matings (polyandry) and/or from the presence of more than one functional queen (polygyny). Here, we report on the use of microsatellite data for the investigation of sociogenetic parameters, such as relatedness, and levels of polygyny and polyandry, in the ant Pheidole pallidula. We demonstrate, through analysis of mother-offspring combinations and the use of direct sperm typing, that each queen is inseminated by a single male. The inbreeding coefficient within colonies and the levels of relatedness between the queens and their mate are not significantly different from zero, indicating that matings occur between unrelated individuals. Analyses of worker genotypes demonstrate that 38% of the colonies are polygynous with 2-4 functional queens, and suggest the existence of reproductive skew, i.e. unequal respective contribution of queens to reproduction. Finally, our analyses indicate that colonies are genetically differentiated and form a population exhibiting significant isolation-by-distance, suggesting that some colonies originate through budding.
Resumo:
Accurate identification of stock boundaries is essential for efficient fisheries management, hence the present study focused on the genetic structure of whiting. To this aim, 488 individuals collected from the southern Bay of Biscay to the southern Norwegian coast were genotyped using seven microsatellites. A low level of genetic structuring was detected in Atlantic waters since only the Bay of Biscay differentiated from more northern samples. The lack of genetic structure along the western margin of the British Isles is consistent with a high level of passive transport of pelagic eggs and larvae due to the combined influence of the North Atlantic Current and the Shelf Edge Current. High levels of dispersal could also occur between the western British Isles and the North Sea through both the branching of the North Atlantic Current into the northern North Sea and from the residual current flowing from the English Channel to the Southern Bight. In contrast, a significant genetic structure was identified within the North Sea, and this may be associated with the complex oceanography of this basin and retention systems reducing larval dispersal. In addition, considering also genetic, phenotypic and tag-recapture data collected on whiting, a learned homing behaviour of adults toward spawning areas may be hypothesised.