995 resultados para CO2-EXPANDED SOLVENTS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene, functionalized with oleylamine (OA) and soluble in non-polar organic solvents, was produced on a large scale with a high yield by combining the Hummers process for graphite oxidation, an amine-coupling process to make OA-functionalized graphite oxide (OA-GO), and a novel reduction process using trioctylphosphine (TOP). TOP acts as both a reducing agent and an aggregation-prevention surfactant in the reduction of OA-GO in 1,2-dichlorobenzene (DCB). The reduction of OA-GO is confirmed by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and Raman spectroscopy. The exfoliation of GO, OA GO, and OA-functionalized graphene (OA-G) is verified by atomic force microscopy. The conductivity of TOP-reduced OA G, which is deduced from the current–voltage characteristics of a vacuum-filtered thin film, shows that the reduction of functionalized GO by TOP is as effective as the reduction of GO by hydrazine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Australian climate, soils and agricultural management practices are significantly different from those of the northern hemisphere nations. Consequently, experimental data on greenhouse gas production from European and North American agricultural soils and its interpretation are unlikely to be directly applicable to Australian systems. A programme of studies of non-CO2 greenhouse gas emissions from agriculture has been established that is designed to reduce uncertainty of non-CO2 greenhouse gas emissions in the Australian National Greenhouse Gas Inventory and provide outputs that will enable better on-farm management practices for reducing non-CO2 greenhouse gas emissions, particularly nitrous oxide. The systems being examined and their locations are irrigated pasture (Kyabram Victoria), irrigated cotton (Narrabri, NSW), irrigated maize (Griffith, NSW), rain-fed wheat (Rutherglen, Victoria) and rain-fed wheat (Cunderdin, WA). The field studies include treatments with and without fertilizer addition, stubble burning versus stubble retention, conventional cultivation versus direct drilling and crop rotation to determine emission factors and treatment possibilities for best management options. The data to date suggest that nitrous oxide emissions from nitrogen fertilizer, applied to irrigated dairy pastures and rain-fed winter wheat, appear much lower than the average of northern hemisphere grain and pasture studies. More variable emissions have been found in studies of irrigated cotton/vetch/wheat rotation and substantially higher emissions from irrigated maize.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The temporal variations in CO2, CH4 and N2O fluxes were measured over two consecutive years from February 2007 to March 2009 from a subtropical rainforest in south-eastern Queensland, Australia, using an automated sampling system. A concurrent study using an additional 30 manual chambers examined the spatial variability of emissions distributed across three nearby remnant rainforest sites with similar vegetation and climatic conditions. Interannual variation in fluxes of all gases over the 2 years was minimal, despite large discrepancies in rainfall, whereas a pronounced seasonal variation could only be observed for CO2 fluxes. High infiltration, drainage and subsequent high soil aeration under the rainforest limited N2O loss while promoting substantial CH4 uptake. The average annual N2O loss of 0.5 ± 0.1 kg N2O-N ha−1 over the 2-year measurement period was at the lower end of reported fluxes from rainforest soils. The rainforest soil functioned as a sink for atmospheric CH4 throughout the entire 2-year period, despite periods of substantial rainfall. A clear linear correlation between soil moisture and CH4 uptake was found. Rates of uptake ranged from greater than 15 g CH4-C ha−1 day−1 during extended dry periods to less than 2–5 g CH4-C ha−1 day−1 when soil water content was high. The calculated annual CH4 uptake at the site was 3.65 kg CH4-C ha−1 yr−1. This is amongst the highest reported for rainforest systems, reiterating the ability of aerated subtropical rainforests to act as substantial sinks of CH4. The spatial study showed N2O fluxes almost eight times higher, and CH4 uptake reduced by over one-third, as clay content of the rainforest soil increased from 12% to more than 23%. This demonstrates that for some rainforest ecosystems, soil texture and related water infiltration and drainage capacity constraints may play a more important role in controlling fluxes than either vegetation or seasonal variability

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Critical incidents offer a focus for exploratory research about human experiences, including information use and information literacy learning. This paper describes how critical incidents underpinned research about international students’ use of online information resources at two Australian universities. It outlines the development and application of an expanded critical incident approach (ECIA), explaining how ECIA built upon critical incident technique (CIT) and incorporated information literacy theory. It discusses points of expansion (differences) between CIT and ECIA. While CIT initially proved useful in structuring the research, the pilot study revealed methodological limitations. ECIA allowed more nuanced data analysis and the integration of reflection. The study produced a multifaceted word picture of international students’ experience of using online information resources to learn, and a set of critical findings about their information literacy learning needs. ECIA offers a fresh approach for researching information use, information experience, evidence-based practice, information literacy and informed learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon dioxide (CO2), as a primary product of combustion, is a known factor affecting climate change and global warming. In Australia, CO2 emissions from biomass burning are a significant contributor to total carbon in the atmosphere and therefore, it is important to quantify the CO2 emission factors from biomass burning in order to estimate their magnitude and impact on the Australian atmosphere. This paper presents the quantification of CO2 emission factors for five common tree species found in South East Queensland forests, as well as several grasses taken from savannah lands in the Northern Territory of Australia, under controlled ‘fast burning’ and ‘slow burning’ laboratory conditions. The results showed that CO2 emission factors varied according to the type of vegetation and burning conditions, with emission factors for fast burning being 2574 ± 254 g/kg for wood, 394 ± 40 g/kg for branches and leaves, and 2181 ± 120 g/kg for grass. Under slow burning conditions, the CO2 emission factors were 218 ± 20 g/kg for wood, 392± 80 g/kg for branches and leaves, and 2027 ± 809 g/kg for grass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Irrigation is known to stimulate soil microbial carbon and nitrogen turnover and potentially the emissions of nitrous oxide (N2O) and carbon dioxide (CO2). We conducted a study to evaluate the effect of three different irrigation intensities on soil N2O and CO2 fluxes and to determine if irrigation management can be used to mitigate N2O emissions from irrigated cotton on black vertisols in South-Eastern Queensland, Australia. Fluxes were measured over the entire 2009/2010 cotton growing season with a fully automated chamber system that measured emissions on a sub-daily basis. Irrigation intensity had a significant effect on CO2 emission. More frequent irrigation stimulated soil respiration and seasonal CO2 fluxes ranged from 2.7 to 4.1 Mg-C ha−1 for the treatments with the lowest and highest irrigation frequency, respectively. N2O emission happened episodic with highest emissions when heavy rainfall or irrigation coincided with elevated soil mineral N levels and seasonal emissions ranged from 0.80 to 1.07 kg N2O-N ha−1 for the different treatments. Emission factors (EF = proportion of N fertilizer emitted as N2O) over the cotton cropping season, uncorrected for background emissions, ranged from 0.40 to 0.53 % of total N applied for the different treatments. There was no significant effect of the different irrigation treatments on soil N2O fluxes because highest emission happened in all treatments following heavy rainfall caused by a series of summer thunderstorms which overrode the effect of the irrigation treatment. However, higher irrigation intensity increased the cotton yield and therefore reduced the N2O intensity (N2O emission per lint yield) of this cropping system. Our data suggest that there is only limited scope to reduce absolute N2O emissions by different irrigation intensities in irrigated cotton systems with summer dominated rainfall. However, the significant impact of the irrigation treatments on the N2O intensity clearly shows that irrigation can easily be used to optimize the N2O intensity of such a system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We applied small-angle neutron scattering (SANS) and ultra small-angle neutron scattering (USANS) to monitor evolution of the CO2 adsorption in porous silica as a function of CO2 pressure and temperature in pores of different sizes. The range of pressures (0 < P < 345 bar) and temperatures (T=18 OC, 35 OC and 60 OC) corresponded to subcritical, near critical and supercritical conditions of bulk fluid. We observed that the adsorption behavior of CO2 is fundamentally different in large and small pores with the sizes D > 100 Å and D < 30 Å, respectively. Scattering data from large pores indicate formation of a dense adsorbed film of CO2 on pore walls with the liquid-like density (ρCO2)ads≈0.8 g/cm3. The adsorbed film coexists with unadsorbed fluid in the inner pore volume. The density of unadsorbed fluid in large pores is temperature and pressure dependent: it is initially lower than (ρCO2)ads and gradually approaches it with pressure. In small pores compressed CO2 gas completely fills the pore volume. At the lowest pressures of the order of 10 bar and T=18 OC, the fluid density in smallest pores available in the matrix with D ~ 10 Å exceeds bulk fluid density by a factor of ~ 8. As pressure increases, progressively larger pores become filled with the condensed CO2. Fluid densification is only observed in pores with sizes less than ~ 25 – 30 Å. As the density of the invading fluid reaches (ρCO2)bulk~ 0.8 g/cm3, pores of all sizes become uniformly filled with CO2 and the confinement effects disappear. At higher densities the fluid in small pores appears to follow the equation of state of bulk CO2 although there is an indication that the fluid density in the inner volume of large pores may exceed the density of the adsorbed layer. The equivalent internal pressure (Pint) in the smallest pores exceeds the external pressure (Pext) by a factor of ~ 5 for both sub- and supercritical CO2. Pint gradually approaches Pext as D → 25 – 30 Å and is independent of temperature in the studied range of 18 OC ≤ T ≤ 60 OC. The obtained results demonstrate certain similarity as well as differences between adsorption of subcritical and supercritical CO2 in disordered porous silica. High pressure small angle scattering experiments open new opportunities for in situ studies of the fluid adsorption in porous media of interest to CO2 sequestration, energy storage, and heterogeneous catalysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalytic CO2 reforming of biomass tar on palygorskite-supported nickel catalysts using toluene as a model compound of biomass tar was investigated. The experiments were performed in a bench scale installation a fixed bed reactor. All experiments were carried out at 650, 750, 800 °C and atmospheric pressure. The effect of Ni loading, reaction temperature and concentration of CO2 on H2 yield and carbon deposit was investigated. Ni/Palygorskite (Ni/PG) catalysts with Ni/PG ratios of 0%, 2%, 5% and 8% were tested, the last two show the best performance. H2 yield and carbon deposit diminished with the increase of reaction temperature, Ni loading, and CO2 concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing concerns about the atmospheric CO2 concentration and its impact on the environment are motivating researchers to discover new materials and technologies for efficient CO2 capture and conversion. Here, we report a study of the adsorption of CO2, CH4, and H2 on boron nitride (BN) nanosheets and nanotubes (NTs) with different charge states. The results show that the process of CO2 capture/release can be simply controlled by switching on/off the charges carried by BN nanomaterials. CO2 molecules form weak interactions with uncharged BN nanomaterials and are weakly adsorbed. When extra electrons are introduced to these nanomaterials (i.e., when they are negatively charged), CO2 molecules become tightly bound and strongly adsorbed. Once the electrons are removed, CO2 molecules spontaneously desorb from BN absorbents. In addition, these negatively charged BN nanosorbents show high selectivity for separating CO2 from its mixtures with CH4 and/or H2. Our study demonstrates that BN nanomaterials are excellent absorbents for controllable, highly selective, and reversible capture and release of CO2. In addition, the charge density applied in this study is of the order of 1013 cm–2 of BN nanomaterials and can be easily realized experimentally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This practice-based presentation explores the role of fashion as an agent for social inclusion and ethical design practice in communities. The Stitchery Collective is an artist-run initiative based in Brisbane, Australia. Operating at the intersection of craft and design, the fashion-based initiative challenges the assumption that fashion is designed, produced and consumed exclusively in the commercial sector. As a not-for-profit cooperative, the stitchery collective is the first and only fashion organisation in Australia to attract funding under the national and state artist-run-initiative scheme. The collective approach extends to the stitchery design practice, facilitated by individual practitioners working within the organisation who devise programs in the context of collaborative and socially engaged design. Working under the banner of a question, Can fashion be more than pretty clothes for pretty people? the stitchery works to extend the cultural field of fashion practice in the 21st century. The premise of dress as a ‘significant creative or cultural expression’ has informed the expanded definition of fashion practice, as adopted by the stitchery. This alternative classification has fostered partnerships with numerous community groups, including those marginalised in the contemporary fashion context such as recent migrants and refugees. Community engagement programs span design, sewing and up-cycling workshops, sustainability lectures, clothing swaps and public education seminars, supported by partnerships with various cultural, government and educational institutions. In 2011, the stitchery travelled to the Venice Biennale’s 3rd International Children’s Carnival, hosting a workshop series and installation to promote design for sustainability. The proven potential for design to connect community members has motivated the stitchery to question the opportunity for fashion practice to, perhaps uncharacteristically, operate under the banner of ‘design for social good’. Acknowledging craft and design as relational fields, this presentation expands fashion as a tool for social innovation and sustainable practice. The stitchery dislocates the consumer status of fashion with small-scale, localised projects; moving beyond fashion as a dictum of social class to an alternative model that is accessible, conscious, flexible, connected and sustainable. As an undefined post-industrial future approaches, the non-commercial status of the stitchery practice might work to present an image of the active post-consumer. How can the stitchery propose a resilient model of design for the future?

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study surveys and interrogates key conceptual frameworks and artistic practises that flow through the distinct but interconnected traditions of non-narrative film and experimental music, and examines how these are articulated in my own creative sound practise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

First principle calculations for a hexagonal (graphene-like) boron nitride (g-BN) monolayer sheet in the presence of a boron-atom vacancy show promising properties for capture and activation of carbon dioxide. CO2 is found to decompose to produce an oxygen molecule via an intermediate chemisorption state on the defect g-BN sheet. The three stationary states and two transition states in the reaction pathway are confirmed by minimum energy pathway search and frequency analysis. The values computed for the two energy barriers involved in this catalytic reaction after enthalpy correction indicate that the catalytic reaction should proceed readily at room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strong binding of isolated carbon dioxide (CO2) on aluminium nitride (AlN) single walled nanotubes is verified using two different functionals. Two optimized configurations corresponding to physisorption and chemisorption are linked by a low energy barrier, such that the chemisorbed state is accessible and thermodynamically favored at low temperatures. In contrast, N2 is found only to form a physisorbed complex with the AlN nanotube, suggesting the potential application of aluminium nitride based materials for CO2 fixation. The effect of nanotube diameter on gas adsorption properties is also discussed. The diameter is found to have an important effect on the chemisorption of CO2, but has little effect on the physisorption of either CO2 or N2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An ab initio density functional theory (DFT) study with correction for dispersive interactions was performed to study the adsorption of N2 and CO2 inside an (8, 8) single-walled carbon nanotube. We find that the approach of combining DFT and van der Waals correction is very effective for describing the long-range interaction between N2/CO2 and the carbon nanotube (CNT). Surprisingly, exohedral doping of an Fe atom onto the CNT surface will only affect the adsorption energy of the quadrupolar CO2 molecule inside the CNT (20–30%), and not that of molecular N2. Our results suggest the feasibility of enhancement of CO2/N2 separation in CNT-based membranes by using exohedral doping of metal atoms.