934 resultados para CO2 absorption
Resumo:
The present study examines how different pCO2 acclimations affect the CO2- and light-dependence of photophysiological processes and O2 fluxes in four Southern Ocean (SO) key phytoplankton species. We grew Chaetoceros debilis (Cleve), Pseudo-nitzschia subcurvata (Hasle), Fragilariopsis kerguelensis (O'Meara) and Phaeocystis antarctica (Karsten) under low (160 µatm) and high (1000 ?atm) pCO2. The CO2- and light-dependence of fluorescence parameters of photosystem II (PSII) were determined by means of a fluorescence induction relaxation system (FIRe). In all tested species, nonphotochemical quenching (NPQ) is the primary photoprotection strategy in response to short-term exposure to high light or low CO2 concentrations. In C. debilis and P. subcurvata, PSII connectivity (p) and functional absorption cross-sections of PSII in ambient light (sigma PSII') also contributed to photoprotection while changes in re-oxidation times of Qa acceptor (tQa) were more significant in F. kerguelensis. The latter was also the only species being responsive to high acclimation pCO2, as these cells had enhanced relative electron transport rates (rETRs) and sigma PSII' while tQa and p were reduced under short-term exposure to high irradiance. Low CO2-acclimated cells of F. kerguelensis and all pCO2 acclimations of C. debilis and P. subcurvata showed dynamic photoinhibition with increasing irradiance. To test for the role and presence of the Mehler reaction in C. debilis and P. subcurvata, the light-dependence of O2 fluxes was estimated using membrane inlet mass spectrometry (MIMS). Our results show that the Mehler reaction is absent in both species under the tested conditions. We also observed that dark respiration was strongly reduced under high pCO2 in C. debilis while it remained unaltered in P. subcurvata. Our study revealed species-specific differences in the photophysiological responses to pCO2, both on the acclimation as well as the short-term level.
Resumo:
Coccolithophores are important calcifying phytoplankton predicted to be impacted by changes in ocean carbonate chemistry caused by the absorption of anthropogenic CO2. However, it is difficult to disentangle the effects of the simultaneously changing carbonate system parameters (CO2, bicarbonate, carbonate and protons) on the physiological responses to elevated CO2. Here, we adopted a multifactorial approach at constant pH or CO2 whilst varying dissolved inorganic carbon (DIC) to determine physiological and transcriptional responses to individual carbonate system parameters. We show that Emiliania huxleyi is sensitive to low CO2 (growth and photosynthesis) and low bicarbonate (calcification) as well as low pH beyond a limited tolerance range, but is much less sensitive to elevated CO2 and bicarbonate. Multiple up-regulated genes at low DIC bear the hallmarks of a carbon-concentrating mechanism (CCM) that is responsive to CO2 and bicarbonate but not to pH. Emiliania huxleyi appears to have evolved mechanisms to respond to limiting rather than elevated CO2. Calcification does not function as a CCM, but is inhibited at low DIC to allow the redistribution of DIC from calcification to photosynthesis. The presented data provides a significant step in understanding how E. huxleyi will respond to changing carbonate chemistry at a cellular level
Resumo:
Oxygen 1s excitation and ionization processes in the CO2 molecule have been studied with dispersed and non-dispersed fluorescence spectroscopy as well as with the vacuum ultraviolet (VUV) photon?photoion coincidence technique. The intensity of the neutral O emission line at 845 nm shows particular sensitivity to core-to-Rydberg excitations and core?valence double excitations, while shape resonances are suppressed. In contrast, the partial fluorescence yield in the wavelength window 300?650 nm and the excitation functions of selected O+ and C+ emission lines in the wavelength range 400?500 nm display all of the absorption features. The relative intensity of ionic emission in the visible range increases towards higher photon energies, which is attributed to O 1s shake-off photoionization. VUV photon?photoion coincidence spectra reveal major contributions from the C+ and O+ ions and a minor contribution from C2+. No conclusive changes in the intensity ratios among the different ions are observed above the O 1s threshold. The line shape of the VUV?O+ coincidence peak in the mass spectrum carries some information on the initial core excitation
Resumo:
Climate change conference was hold in Copenhagen in 2009, global warming became the worldwide focus once again. China as a developing country has paid more attention for this environmental problem. In China, a large part of carbon dioxide is emitted to the atmosphere from combustion of fossil fuels in power plants. How to control emission of the greenhouse gas into atmosphere is becoming an urgent concern. Among numerous methods, CO2 capture is the hope to limit the amount of CO2 emitted into the air. The well-established method for CO2 capture is to remove CO2 by absorption into solutions in conventional equipment. Absorbents used for CO2 and H2S capture are important choice for CO2 capture technology. It is related to the cost and efficiency of plant directly and is essential to investigate the proposed CO2 and H2S absorbents.
Resumo:
Hypoxia and ocean acidification are two consequences of anthropogenic activities. These global trends occur on top of natural variability. In environments such as estuarine areas, short-term acute pH and O2 fluctuations are occurring simultaneously. The present study tested the combined effects of short-term seawater acidification and hypoxia on the physiology and energy budget of the thick shell mussel Mytilus coruscus. Mussels were exposed for 72 h to six combined treatments with three pH levels (8.1, 7.7 and 7.3) and two dissolved oxygen (DO) levels (2 mg/L, 6 mg/L). Clearance rate (CR), food absorption efficiency (AE), respiration rate (RR), ammonium excretion rate (ER), O:N ratio and scope for growth (SFG) were significantly reduced, and faecal organic dry weight ratio (E) was significantly increased at low DO. Low pH did not lead to a reduced SFG. Interactive effects of pH and DO were observed for CR, E and RR. Principal component analysis (PCA) revealed positive relationships among most physiological indicators, especially between SFG and CR under normal DO conditions. These results demonstrate that Mytilus coruscus was sensitive to short-term (72 h) exposure to decreased O2 especially if combined with decreased pH levels. In conclusion, the short-term oxygen and pH variation significantly induced physiological changes of mussels with some interactive effects.
Resumo:
Dissertação (Mestrado em Tecnologia Nuclear)
Resumo:
Traveling wave ion mobility mass spectrometry (TWIM-MS) is shown to be able to separate and characterize several isomeric forms of diterpene glycosides stevioside (Stv) and rebaudioside A (RebA) that are cationized by Na(+) and K(+) at different sites. Determination and characterization of these coexisting isomeric species, herein termed catiomers, arising from cationization at different and highly competitive coordinating sites, is particularly challenging for glycosides. To achieve this goal, the advantage of using CO2 as a more massive and polarizable drift gas, over N2 , was demonstrated. Post-TWIM-MS/MS experiments were used to confirm the separation. Optimization of the possible geometries and cross-sectional calculations for mobility peak assignments were also performed. Copyright © 2015 John Wiley & Sons, Ltd.
Resumo:
The caffeine solubility in supercritical CO2 was studied by assessing the effects of pressure and temperature on the extraction of green coffee oil (GCO). The Peng-Robinson¹ equation of state was used to correlate the solubility of caffeine with a thermodynamic model and two mixing rules were evaluated: the classical mixing rule of van der Waals with two adjustable parameters (PR-VDW) and a density dependent one, proposed by Mohamed and Holder² with two (PR-MH, two parameters adjusted to the attractive term) and three (PR-MH3 two parameters adjusted to the attractive and one to the repulsive term) adjustable parameters. The best results were obtained with the mixing rule of Mohamed and Holder² with three parameters.
Resumo:
Gracilaria Greville is a genus of seaweed that is economically explored by the cosmetic, pharmaceutical and food industries. One of the biggest problems associated with growing Gracilaria is the discharge of heavy metals into the marine environment. The absorption of heavy metals was investigated with the macroalga Gracilaria tenuistipitata Zhang et Xia, cultivated in a medium containing copper (Cu) and cadmium (Cd). In biological samples, EC50 concentrations of 1 ppm for cadmium and 0.95 ppm for copper were used. These concentrations were based on seaweed growth curves obtained over a period of six days in previous studies. ICP-AES was used to determine the amount of metal that seaweeds absorbed during this period. G. tenuistipitata was able to bioaccumulate both metals, about 17% of copper and 9% of cadmium. Basal natural levels of Cu were found in control seaweeds and in G. tenuistipitata exposed to Cd. In addition, the repertoire of other important chemical elements, as well as their concentrations, was determined for G. tenuistipitata and two other important seaweeds, G. birdiae Plastino & Oliveira and G. domingensis (Kützing) Sonder ex Dickie, collected in natural environments on the Brazilian shore.
Resumo:
OBJETIVO: Avaliar os efeitos da infiltração de dióxido de carbono em adipócitos presentes na parede abdominal. MÉTODOS: Quinze voluntárias foram submetidas a sessões de infusão de CO2 durante três semanas consecutivas (duas sessões por semana com intervalos de dois a três dias entre cada sessão). O volume de gás carbônico infundido por sessão, em pontos previamente demarcados, foi sempre calculado com base na superfície da área a ser tratada, com volume infundido fixo de 250 mL/100cm² de superfície tratada. Os pontos de infiltração foram demarcados respeitando-se o limite eqüidistante 2cm entre eles. Em cada ponto se injetou 10mL, por sessão, com fluxo de 80mL/min. Foram colhidos fragmentos de tecido celular subcutâneo da parede abdominal anterior antes e após o tratamento. O número e as alterações histomorfológicas dos adipócitos (diâmetro médio, perímetro, comprimento, largura e número de adipócitos por campos de observação) foram mensurados por citometria computadorizada. Os resultados foram analisados com o teste t de Student pareado, adotando-se nível de significância de 5% (p<0,05). RESULTADOS: Encontrou-se redução significativa no número de adipócitos da parede abdominal e na área, diâmetro, perímetro, comprimento e largura após o uso da hipercapnia (p=0,0001). CONCLUSÃO: A infiltração percutânea de CO2 reduz a população e modifica a morfologia dos adipócitos presentes na parede abdominal anterior.
Resumo:
Studies have shown that both carbon dioxide (CO2) and octenol (1-octen-3-ol) are effective attractants for mosquitoes. The objective of the present study was to evaluate the attractiveness of 1-octen-3-ol and CO2 for diurnal mosquitoes in the southeastern Atlantic forest. A Latin square experimental design was employed with four treatments: CDC-light trap (CDC-LT), CDC-LT and 1-octen-3-ol, CDC-LT and CO2 and CDC-LT with 1-octen-3-ol and CO2. Results demonstrated that both CDC-CO2 and CDC-CO2-1-octen-3-ol captured a greater number of mosquito species and specimens compared to CDC-1-octen-3-ol; CDC-LT was used as the control. Interestingly, Anopheles (Kerteszia) sp. was generally attracted to 1-octen-3-ol, whereas Aedes serratus was the most abundant species in all Latin square collections. This species was recently shown to be competent to transmit the yellow fever virus and may therefore play a role as a disease vector in rural areas of Brazil.
Resumo:
The crystal structure and the local atomic order of a series of nanocrystalline ZrO(2)-CaO solid solutions with varying CaO content were studied by synchrotron radiation X-ray powder diffraction and extended X-ray absorption fine structure (EXAFS) spectroscopy. These samples were synthesized by a pH-controlled nitrate-glycine gel-combustion process. For CaO contents up to 8 mol%, the t' form of the tetragonal phase (c/a > 1) was identified, whereas for 10 and 12 mol% CaO, the t '' form (c/a=1; oxygen anions displaced from their ideal positions in the cubic phase) was detected. Finally, the cubic phase was observed for solid solutions with CaO content of 14 mol% CaO or higher. The t'/t '' and t ''/cubic compositional boundaries were determined to be at 9 (1) and 13 (1) mol% CaO, respectively. The EXAFS study demonstrated that this transition is related to a tetragonal-to-cubic symmetry change of the first oxygen coordination shell around the Zr atoms.
Resumo:
In this study, we examine the spectral dependence of aerosol absorption at different sites and seasons in the Amazon Basin. The analysis is based on measurements performed during three intensive field experiments at a pasture site (Fazenda Nossa Senhora, Rondonia) and at a primary forest site (Cuieiras Reserve, Amazonas), from 1999 to 2004. Aerosol absorption spectra were measured using two Aethalometers: a 7-wavelength Aethalometer (AE30) that covers the visible (VIS) to near-infrared (NIR) spectral range, and a 2-wavelength Aethalometer (AE20) that measures absorption in the UV and in the NIR. As a consequence of biomass burning emissions, about 10 times greater absorption values were observed in the dry season in comparison to the wet season. Power law expressions were fitted to the measurements in order to derive the absorption Angstrom exponent, defined as the negative slope of absorption versus wavelength in a log-log plot. At the pasture site, about 70% of the absorption Angstrom exponents fell between 1.5 and 2.5 during the dry season, indicating that biomass burning aerosols have a stronger spectral dependence than soot carbon particles. Angstrom exponents decreased from the dry to the wet season, in agreement with the shift from biomass burning aerosols, predominant in the fine mode, to biogenic and dust aerosols, predominant in the coarse mode. The lowest absorption Angstrom exponents (90% of data below 1.5) were observed at the forest site during the dry season. Also, results indicate that low absorption coefficients were associated with low Angstrom exponents. This finding suggests that biogenic aerosols from Amazonia have a weaker spectral dependence for absorption than biomass burning aerosols, contradicting our expectations of biogenic particles behaving as brown carbon. In a first order assessment, results indicate a small (<1 %) effect of variations in absorption Angstrom exponents on 24-h aerosol forcings, at least in the spectral range of 450-880 nm. Further studies should be taken to assess the corresponding impact in the UV spectral range. The assumption that soot spectral properties represent all ambient light absorbing particles may cause a misjudgment of absorption towards the UV, especially in remote areas. Therefore, it is recommended to measure aerosol absorption at several wavelengths to accurately assess the impact of non-soot aerosols on climate and on photochemical atmospheric processes.
Resumo:
The dynamic polarizability and optical absorption spectrum of liquid water in the 6-15 eV energy range are investigated by a sequential molecular dynamics (MD)/quantum mechanical approach. The MD simulations are based on a polarizable model for liquid water. Calculation of electronic properties relies on time-dependent density functional and equation-of-motion coupled-cluster theories. Results for the dynamic polarizability, Cauchy moments, S(-2), S(-4), S(-6), and dielectric properties of liquid water are reported. The theoretical predictions for the optical absorption spectrum of liquid water are in good agreement with experimental information.
Resumo:
A method of using X-ray absorption spectroscopy together with resolved grazing-incidence geometry for depth profiling of atomic, electronic or chemical local structures in thin films is presented. The quantitative deconvolution of thickness-dependent spectral features is performed by fully considering both scattering and absorption formalisms. Surface oxidation and local structural depth profiles in nanometric FePt films are determined, exemplifying the application of the method.