1000 resultados para CNPQ::ENGENHARIAS::ENGENHARIA MECANICA::PROCESSOS DE FABRICACAO::ROBOTIZACAO


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The need of the oil industry to ensure the safety of the facilities, employees and the environment, not to mention the search for maximum efficiency of its facilities, makes it seeks to achieve a high level of excellence in all stages of its production processes in order to obtain the required quality of the final product. Know the reliability of equipment and what it stands for a system is of fundamental importance for ensuring the operational safety. The reliability analysis technique has been increasingly applied in the oil industry as fault prediction tool and undesirable events that can affect business continuity. It is an applied scientific methodology that involves knowledge in engineering and statistics to meet and or analyze the performance of components, equipment and systems in order to ensure that they perform their function without fail, for a period of time and under a specific condition. The results of reliability analyzes help in making decisions about the best maintenance strategy of petrochemical plants. Reliability analysis was applied on equipment (bike-centrifugal fan) between the period 2010-2014 at the Polo Petrobras Guamaré Industrial, situated in rural Guamaré municipality in the state of Rio Grande do Norte, where he collected data field, analyzed historical equipment and observing the behavior of faults and their impacts. The data were processed in commercial software reliability ReliaSoft BlockSim 9. The results were compared with a study conducted by the experts in the field in order to get the best maintenance strategy for the studied system. With the results obtained from the reliability analysis tools was possible to determine the availability of the centrifugal motor-fan and what will be its impact on the security of process units if it will fail. A new maintenance strategy was established to improve the reliability, availability, maintainability and decreased likelihood of Moto-Centrifugal Fan failures, it is a series of actions to promote the increased system reliability and consequent increase in cycle life of the asset. Thus, this strategy sets out preventive measures to reduce the probability of failure and mitigating aimed at minimizing the consequences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the heavy use of bearings in various segments of the industry, there are a large number of necessary interruptions in industrial processes to perform maintenance on these devices, with the case study wind turbines. The growth of the wind energy sector, encouraged to conduct research that helps to solve this problem. To contribute to predictive maintenance has been carried out a signal analysis using techniques which allow detection and location of the problem in order to prevent accidents caused and losses due to unexpected equipment failures, whereas low system rotation complicates the detection of the failure. To work around this problem, there was the indication of standard signals for defects in the bearings, making diagnosis of possible failures. With this diagnosis can be performed predictive maintenance, identifying the failure of the system that were tested, such as the introduction of grains of sand in the bearing, wear on the outer race of the bearing and bearing rust. By processing signals it is possible to construct graphs developing a mapping of defects by different peaks in the frequency band.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As time passed, humanity needed the development of new materials used in various activities. High strength materials such as titanium and Inconel for example, had been studied because they are widely used for implants in biomedicine, as well as their use in aerospace and automotive industries. Because of its thermal and mechanical properties, these materials are considered difficult to machine, promoting a rapid wear of cutting tools, primarily caused by the high temperatures in machining. With the development of new materials has emerged the need of developing new manufacturing processes. One of today’s innovative processes is the micro-manufacturing. Being a process with a defined cutting tool geometry, burr formation is a constant and undesirable phenomenon formed during the machininig process. Being detrimental to the manufacturing process, overspending deburring operations are constantly employed leading to increase the aggregate cost to the manufactured material. Assembly components are also impaired if there is no control of the burr, with consequences including the disposal of components due to the occurence of this phenomenon. This paper presents the study of micro-milling Inconel 718, investigating influential parameters in the formation of burrs in order to minimize the occurrence of this phenome non. Different feed rates per tooth and cutting speed are evaluated, and different cutting fluids with different methods of applying the fluid. Adding graphene to cutting fluids was considered as a variable to be investigated, which is considered an excellent solid lubricant, in addition to increasing the thermal conductivity of the cooling solution (AZIMI; MOZAF FARI, 2015). The micro-milling temperature was evaluated in the present work. It was observed a new phenomenon that causes the machined surface temperature decreases below room temperature when using the solution water + oil. This phenomenon is explained in further chapters. In order to unravel this phenomenon, a new test was proposed and, from this test, it can be concluded, comparatively, which cutting fluid has a better cooling property.Using cutting fluid with different thermal properties has shown influence when analy zing burr formation and reducing machining temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Welding is one of the most employed process for joining steel pipes. Although, manual welding is still the most used one, mechanized version and even automatized one have increased its demand. Thus, this work deals with girth welding of API 5L X65 pipes with 8” of nominal diameter and 8.0 mm thickness, beveled with V-30º narrow gap. Torch is moved by a bug carrier (mechanized welding) and further the parameters are controlled as a function of angular position (automatized welding). Welding parameters are presented for filling the joint with two-passes (root and filling/capping passes). Parameters for the root pass were extracted from previous author´s work with weldments carried out in plates, but validated in this work for pipe welding. GMAW processes were assessed with short-circuit metal transfer in both conventional and derivative modes using different technologies (RMD, STT and CMT). After the parameter determination, mechanical testing was performed for welding qualification (uniaxial tension, face and root bending, nick break, Charpy V-notch impact, microhardness and macrograph). The initially obtained results for RMD and CMT were acceptable for all testing and, in a second moment, also for the STT. However, weld beads carried out by using the conventional process failed and revealed the existence of lack of fusion, which required further parametrization. Thus, a Parameter-Variation System for Girth Welding (SVP) was designed and built to allow varying the welding parameters as a function of angular position by using an inclinometer. The parameters were set for each of the three angular positions (flat, vertical downhill and overhead). By using such equipment and approach, the conventional process with parameter variation allowed reducing the welding time for joint accomplishment of the order of 38% for the root pass and 30% for the filling/capping pass.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a scenario of increasing competitiveness of the global industrial sector and with a consumer market increasingly demanding, there is an increased demand for new materials and, consequently, possibilities to explore new research and technological advances towards the development of new manufacturing methods or the improvement of existing technologies. In the case of cast irons, new grades of them have been developed so that their mechanical properties have been improved, making them more competitive with steel, expanding the applications and thus represents great economic gain for metallurgy and manufacturing sectors. This increases the interest and creates new opportunities to study these materials and identify how they respond in terms of the surface integrity, tool wear, cutting forces, among others, when machined by grinding operation. In this context, due to the lack of results from grinding of cast irons and studies comparing grindability among several grades of cast irons found in the literature, this work aims to generate scientific and technological contribution to the metallurgical and metal working sector through roughness results (Ra and Rz parameters) and evaluation and analysis of the subsurface integrity of three cast iron grades (gray, compacted graphite and nodular). The machining trials were performed on a surface grinding machine with silicon carbide grinding wheel at different cutting conditions. The input variables were the radial depth of cut (15 and 30 μm), worktable speed, vw (5 and 10 m/min) and the abrasive grain size of the grinding wheel. The results showed that surface roughness increased with the radial depth of cut for all materials tested; and the lowest values were obtained for gray cast iron. Also, roughness was sensitive to variation of worktable speed and the lowest values were obtained after machining with vw = 5 m/min. With respect to the abrasive grain size, as it decreased the roughness values increased to gray and nodular cast iron grades. Furthermore, grinding burns marks were observed on the surfaces of nodular cast iron and compacted graphite iron grades after grinding the smallest grain size, contrary to what is usually reported in literature. However, no evidence of severe thermal damages below the machined surfaces of all cast iron grades was observed after analyzing the results of hardness and the SEM micrograph images.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the Flux Cored Arc Welding (FCAW) process, the transfer of filler metal (metal transfer modes) to the base material to accomplish the weld bead determines the weld quality and therefore studies of such phenomena is demanded. Thus, in this work, the metal transfer through the FCAW process is investigated by filming the phenomena with the assist of near infrared visualization. During the literature survey, it was found that this technic has not been used so far for analyzing the FCAW process. It must be pointed out that the radiation emitted from the weld arc, fumes and particles (spattering) in this process represent a barrier for these studies based in the process visualization. The monitoring of metal transfer for FCAW process was carried out within the operational envelope of voltage and wire feed speed with the electrode E71T-1 (1.2 mm diameter) and Ar+25%CO2 as a shielding gas. A local developed near infrared filming with frame rate of 300 Hz was employed for metal transfer visualization in order to contribute to a better understanding of this process and evaluating characteristics of metal transfer, unlike previous studies, which used shadowgraph technique. It can clearly be seen how the droplet is created and transferred in this process and also identify the different modes of metal transfer by changing the parameters of voltage and wire feed speed in metal transfer maps. The final result of this study is the metal transfer mode maps, which establish suitable conditions and provide the basis for developing arc control strategies for the FCAW process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The metropolitan regions of Northeast Brazil are being gradually included in a scenario of international investments, which are motivated by the restructuring of both touristic and real-estate sectors. The new capital, real-estate developers and space configurations that result from this process indicate the need for the creation and implementation of public tools which should, at least, allow the mitigation of the urban impacts and environmental losses resulting from this situation. The effects on landscape and on the socio-spatial configuration result from the intensification caused by the dynamism of the "real estate-tourism" sector. There is a regional integration as an expression of the urban expansion of the metropolitan area of Natal. This study investigates the uniqueness of the restructuring and territorial integration of coastal areas and the strategies of the circuit of capital accumulation formed by linking the real estate to tourism. It is intended to increase the understanding about the strategies of tourism, real estate and public policy agents involved in this territorial reconfiguration and in the fund-raising needed for the investments, to understand the existing social and environmental effects and their future trends and also to understand the forms of spatial production as results from the practices of approaching the land transformation and the tourism valorization of the landscape, in a synchronous manner, first in the Northeast region and, as a focal study, in the Metropolitan Area of Natal. Likewise, it is intended to apprehend the current processes of metropolization of the eastern coast of Rio Grande do Norte, in addition to indicate its physical-territorial transformation and the types of projects/developments promoted by the market in the recent period. Based upon analysis undertaken for the Metropolitan Region of Natal RN, this piece of work presents some considerations on possible legal instruments that can be adjusted to the municipalities which are experiencing the impact of this peculiar and recent phenomenon in the region, caused by the arrival of the real estate-touristic capital. It is also intended to point out basic proposals to the forms of public intervention, in a speculative way, starting from a Metropolitan Planning project within a medium and long term

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The metropolitan regions of Northeast Brazil are being gradually included in a scenario of international investments, which are motivated by the restructuring of both touristic and real-estate sectors. The new capital, real-estate developers and space configurations that result from this process indicate the need for the creation and implementation of public tools which should, at least, allow the mitigation of the urban impacts and environmental losses resulting from this situation. The effects on landscape and on the socio-spatial configuration result from the intensification caused by the dynamism of the "real estate-tourism" sector. There is a regional integration as an expression of the urban expansion of the metropolitan area of Natal. This study investigates the uniqueness of the restructuring and territorial integration of coastal areas and the strategies of the circuit of capital accumulation formed by linking the real estate to tourism. It is intended to increase the understanding about the strategies of tourism, real estate and public policy agents involved in this territorial reconfiguration and in the fund-raising needed for the investments, to understand the existing social and environmental effects and their future trends and also to understand the forms of spatial production as results from the practices of approaching the land transformation and the tourism valorization of the landscape, in a synchronous manner, first in the Northeast region and, as a focal study, in the Metropolitan Area of Natal. Likewise, it is intended to apprehend the current processes of metropolization of the eastern coast of Rio Grande do Norte, in addition to indicate its physical-territorial transformation and the types of projects/developments promoted by the market in the recent period. Based upon analysis undertaken for the Metropolitan Region of Natal RN, this piece of work presents some considerations on possible legal instruments that can be adjusted to the municipalities which are experiencing the impact of this peculiar and recent phenomenon in the region, caused by the arrival of the real estate-touristic capital. It is also intended to point out basic proposals to the forms of public intervention, in a speculative way, starting from a Metropolitan Planning project within a medium and long term

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work purposes the application of a methodology to optimize the implantation cost of an wind-solar hybrid system for oil pumping. The developed model is estimated the implantation cost of system through Multiple Linear Regression technique, on the basis of the previous knowledge of variables: necessary capacity of storage, total daily energy demand, wind power, module power and module number. These variables are gotten by means of sizing. The considered model not only can be applied to the oil pumping, but also for any other purposes of electric energy generation for conversion of solar, wind or solar-wind energy, that demand short powers. Parametric statistical T-student tests had been used to detect the significant difference in the average of total cost to being considered the diameter of the wind, F by Snedecor in the variance analysis to test if the coefficients of the considered model are significantly different of zero and test not-parametric statistical by Friedman, toverify if there is difference in the system cost, by being considered the photovoltaic module powers. In decision of hypothesis tests was considered a 5%-significant level. The configurations module powers showed significant differences in total cost of investment by considering an electrical motor of 3 HP. The configurations module powers showed significant differences in total cost of investment by considering an electrical motor of 5 HP only to wind speed of 4m/s and 6 m/s in wind of 3 m, 4m and 5 m of diameter. There was not significant difference in costs to diameters of winds of 3 m and 4m. The mathematical model and the computational program may be used to others applications which require electrical between 2.250 W and 3.750 W. A computational program was developed to assist the study of several configurations that optimizes the implantation cost of an wind-solar system through considered mathematical model

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The processing of materials through plasma has been growing enough in the last times in several technological applications, more specifically in surfaces treatment. That growth is due, mainly, to the great applicability of plasmas as energy source, where it assumes behavior thermal, chemical and/or physical. On the other hand, the multiplicity of simultaneous physical effects (thermal, chemical and physical interactions) present in plasmas increases the complexity for understanding their interaction with solids. In that sense, as an initial step for the development of that subject, the present work treats of the computational simulation of the heating and cooling processes of steel and copper samples immersed in a plasma atmosphere, by considering two experimental geometric configurations: hollow and plane cathode. In order to reach such goal, three computational models were developed in Fortran 90 language: an one-dimensional transient model (1D, t), a two-dimensional transient model (2D, t) and a two-dimensional transient model (2D, t) which take into account the presence of a sample holder in the experimental assembly. The models were developed based on the finite volume method and, for the two-dimensional configurations, the effect of hollow cathode on the sample was considered as a lateral external heat source. The main results obtained with the three computational models, as temperature distribution and thermal gradients in the samples and in the holder, were compared with those developed by the Laboratory of Plasma, LabPlasma/UFRN, and with experiments available in the literature. The behavior showed indicates the validity of the developed codes and illustrate the need of the use of such computational tool in that process type, due to the great easiness of obtaining thermal information of interest

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential market of the metropolitan area of Salvador accounts for the estimated consumption of roughly 800 million horizontally perforated extruded clay bricks a year. The growing demand of consumers along with the competitiveness of the structural ceramic sector has driven forward a number of recent efforts and investments towards improving the quality of structural ceramics. In this scenario, the present study focused on sampling and evaluating the conformity of 8-hole horizontally perforated extruded clay bricks manufactured by different plants (A, B and C) in the metropolitan area of Salvador. In addition, representative clay and sandy-clay materials were collected from each plant and characterized by conventional physical, chemical and mineralogical techniques. Finally, experimental compositions designated as A, B and C, according to the source, were prepared by mixing different contents of the raw materials collected in the plants, fired at different temperatures and characterized. The results revealed a series of non conformities regarding ABNT guidelines. The characterization of raw materials revealed the presence of kaolinite and ilite in concentrations ranging from 64 to 90 wt.% along with free quartz (10 - 25%). The sandy-clay samples consisted basically of kaolinite. All raw materials depicted low contents of organics, amorphous constituents, alkaline oxides and feldspar. An analysis of the firing behavior of all different ceramic compositions revealed that the linear contraction of composition A was rather significant considering the temperature range evaluated, and it justifies the significant dimensional non conformity that was shown by bricks made with the ceramic A

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of the physical and mechanic properties is an analysis of unquestioned importance on the production of the ceramic materials. In the region of the Recôncavo Baiano, there are ceramic and small brick factories, that still use rudimentary techniques, where the necessity of characterization of raw materials is denounced by the quality of the final product. The present work has for objective to study the behavior of the clay proceeding from the region of the Recôncavo, between the cities of Candeias and Camaçari/Ba, with addition of 5, 10 and 15% by weight of brick scraps, trying to optimize the physic and mechanical properties of the final product, aiming a better possibility of being manufactured, mechanic resistance, low linear retraction and water absorption. The brick scraps and the clay were characterized by FRX, DRX, TG, ATD and the granulometric analysis. Samples for testing where prepared by uniaxial pressing at 25Mpa, in 60x20x5mm size. The evaluated technological properties were: linear retraction, water absorption, apparent porosity and flexural strength. The samples were burned in electric oven in the temperatures of 850º, 950º and 1050ºC and compared its mechanical properties and the gresification. With addition of 15% by weight of brick scraps and burning at 900º-1000ºC the samples showed properties superior to that clay

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An solar alternative system for water heating is presented. Is composed for one low cost alternative collector and alternative thermal reservoir for hot water storing. The collector of the system has box confectioned in composite material and use absorption coils formed for PVC tubes. The box of hot water storage was confectioned from a plastic polyethylene drum used for storage of water and garbage, coated for a cylinder confectioned in fiber glass. The principle of functioning of the system is the same of the conventionally. Its regimen of work is the thermosiphon for a volume of 250 liters water. The main characteristic of the system in considered study is its low cost, allowing a bigger socialization of the use of solar energy. It will be demonstrated the viabilities thermal, economic and of materials of the system of considered heating, and its competitiveness in relation to the available collectors commercially. Relative aspects will be boarded also the susceptibility the thermal degradation and for UV for the PVC tubes. It will be shown that such system of alternative heating, that has as main characteristic its low cost, presents viabilities thermal, economic and of materials

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geopolymers are cementing materials that depict a number of advantages compared to Portland cement. Contrary to the latter, geopolymers are synthesized at room temperature, thus significantly reducing the emission of CO2 to the atmosphere. Moreover, the composition and synthesis reactions can be tailored to adjust the setting time of the material as well as its compressive mechanical strength. It is then possible to produce geopolymeric cements with short setting times and high compressive strength, although relatively brittle. The objective of the present study was to produce and characterize composite materials by reinforcing fastsetting geopolymeric matrixes with polypropylene geosynthetics (geomats and geotextiles) in an attempt to improve the toughness and tensile strength of the cementing material. Geosynthetics have been increasingly used to reinforce engineering structures, providing higher strength and better toughness. In particular, polypropylene nonwoven and geomats depict other attractive properties such as low density, durability, impact absorption and resistance to abrasion. Fast-setting geopolymers were then synthesized and reinforced with polypropylene nonwoven and geomats. The mechanical strength of the materials, reinforced or not, was characterized. The results showed that relatively short setting times and adequate flowing behavior were achieved by adjusting the composition of the geopolymer. In addition, it is possible to improve the fracture resistance of geopolymeric cements by adding polypropylene geosynthetics. The best results were achieved by reinforcing geopolymer with polypropylene TNT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hard metals are the composite developed in 1923 by Karl Schröter, with wide application because high hardness, wear resistance and toughness. It is compound by a brittle phase WC and a ductile phase Co. Mechanical properties of hardmetals are strongly dependent on the microstructure of the WC Co, and additionally affected by the microstructure of WC powders before sintering. An important feature is that the toughness and the hardness increase simultaneously with the refining of WC. Therefore, development of nanostructured WC Co hardmetal has been extensively studied. There are many methods to manufacture WC-Co hard metals, including spraying conversion process, co-precipitation, displacement reaction process, mechanochemical synthesis and high energy ball milling. High energy ball milling is a simple and efficient way of manufacturing the fine powder with nanostructure. In this process, the continuous impacts on the powders promote pronounced changes and the brittle phase is refined until nanometric scale, bring into ductile matrix, and this ductile phase is deformed, re-welded and hardened. The goal of this work was investigate the effects of highenergy milling time in the micro structural changes in the WC-Co particulate composite, particularly in the refinement of the crystallite size and lattice strain. The starting powders were WC (average particle size D50 0.87 μm) supplied by Wolfram, Berglau-u. Hutten - GMBH and Co (average particle size D50 0.93 μm) supplied by H.C.Starck. Mixing 90% WC and 10% Co in planetary ball milling at 2, 10, 20, 50, 70, 100 and 150 hours, BPR 15:1, 400 rpm. The starting powders and the milled particulate composite samples were characterized by X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) to identify phases and morphology. The crystallite size and lattice strain were measured by Rietveld s method. This procedure allowed obtaining more precise information about the influence of each one in the microstructure. The results show that high energy milling is efficient manufacturing process of WC-Co composite, and the milling time have great influence in the microstructure of the final particles, crushing and dispersing the finely WC nanometric order in the Co particles