108 resultados para CIPHERS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trivium is a keystream generator for a binary additive synchronous stream cipher. It was selected in the final portfolio for the Profile 2 category of the eSTREAM project. The keystream generator is constructed using bit- based shift registers. In this paper we present an alternate representation of Trivium using word-based shift registers, with a word size of three bits. This representation is useful for determining cycles of internal state values. Under this representation it is clear that the state space can be partitioned into subspaces and that over some of these subspaces the state update function is effectively linear. The role of the initialization process is critical in ensuring the states used for generating keystream are updated nonlinearly at some point, as the state update function alone does not provide this.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a model for generating a MAC tag by injecting the input message directly into the internal state of a nonlinear filter generator. This model generalises a similar model for unkeyed hash functions proposed by Nakano et al. We develop a matrix representation for the accumulation phase of our model and use it to analyse the security of the model against man-in-the-middle forgery attacks based on collisions in the final register contents. The results of this analysis show that some conclusions of Nakano et al regarding the security of their model are incorrect. We also use our results to comment on several recent MAC proposals which can be considered as instances of our model and specify choices of options within the model which should prevent the type of forgery discussed here. In particular, suitable initialisation of the register and active use of a secure nonlinear filter will prevent an attacker from finding a collision in the final register contents which could result in a forged MAC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Authenticated Encryption (AE) is the cryptographic process of providing simultaneous confidentiality and integrity protection to messages. This approach is more efficient than applying a two-step process of providing confidentiality for a message by encrypting the message, and in a separate pass providing integrity protection by generating a Message Authentication Code (MAC). AE using symmetric ciphers can be provided by either stream ciphers with built in authentication mechanisms or block ciphers using appropriate modes of operation. However, stream ciphers have the potential for higher performance and smaller footprint in hardware and/or software than block ciphers. This property makes stream ciphers suitable for resource constrained environments, where storage and computational power are limited. There have been several recent stream cipher proposals that claim to provide AE. These ciphers can be analysed using existing techniques that consider confidentiality or integrity separately; however currently there is no existing framework for the analysis of AE stream ciphers that analyses these two properties simultaneously. This thesis introduces a novel framework for the analysis of AE using stream cipher algorithms. This thesis analyzes the mechanisms for providing confidentiality and for providing integrity in AE algorithms using stream ciphers. There is a greater emphasis on the analysis of the integrity mechanisms, as there is little in the public literature on this, in the context of authenticated encryption. The thesis has four main contributions as follows. The first contribution is the design of a framework that can be used to classify AE stream ciphers based on three characteristics. The first classification applies Bellare and Namprempre's work on the the order in which encryption and authentication processes take place. The second classification is based on the method used for accumulating the input message (either directly or indirectly) into the into the internal states of the cipher to generate a MAC. The third classification is based on whether the sequence that is used to provide encryption and authentication is generated using a single key and initial vector, or two keys and two initial vectors. The second contribution is the application of an existing algebraic method to analyse the confidentiality algorithms of two AE stream ciphers; namely SSS and ZUC. The algebraic method is based on considering the nonlinear filter (NLF) of these ciphers as a combiner with memory. This method enables us to construct equations for the NLF that relate the (inputs, outputs and memory of the combiner) to the output keystream. We show that both of these ciphers are secure from this type of algebraic attack. We conclude that using a keydependent SBox in the NLF twice, and using two different SBoxes in the NLF of ZUC, prevents this type of algebraic attack. The third contribution is a new general matrix based model for MAC generation where the input message is injected directly into the internal state. This model describes the accumulation process when the input message is injected directly into the internal state of a nonlinear filter generator. We show that three recently proposed AE stream ciphers can be considered as instances of this model; namely SSS, NLSv2 and SOBER-128. Our model is more general than a previous investigations into direct injection. Possible forgery attacks against this model are investigated. It is shown that using a nonlinear filter in the accumulation process of the input message when either the input message or the initial states of the register is unknown prevents forgery attacks based on collisions. The last contribution is a new general matrix based model for MAC generation where the input message is injected indirectly into the internal state. This model uses the input message as a controller to accumulate a keystream sequence into an accumulation register. We show that three current AE stream ciphers can be considered as instances of this model; namely ZUC, Grain-128a and Sfinks. We establish the conditions under which the model is susceptible to forgery and side-channel attacks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A key derivation function is used to generate one or more cryptographic keys from a private (secret) input value. This paper proposes a new method for constructing a generic stream cipher based key derivation function. We show that our proposed key derivation function based on stream ciphers is secure if the underlying stream cipher is secure. We simulate instances of this stream cipher based key derivation function using three eStream finalist: Trivium, Sosemanuk and Rabbit. The simulation results show these stream cipher based key derivation functions offer efficiency advantages over the more commonly used key derivation functions based on block ciphers and hash functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Streamciphers are common cryptographic algorithms used to protect the confidentiality of frame-based communications like mobile phone conversations and Internet traffic. Streamciphers are ideal cryptographic algorithms to encrypt these types of traffic as they have the potential to encrypt them quickly and securely, and have low error propagation. The main objective of this thesis is to determine whether structural features of keystream generators affect the security provided by stream ciphers.These structural features pertain to the state-update and output functions used in keystream generators. Using linear sequences as keystream to encrypt messages is known to be insecure. Modern keystream generators use nonlinear sequences as keystream.The nonlinearity can be introduced through a keystream generator's state-update function, output function, or both. The first contribution of this thesis relates to nonlinear sequences produced by the well-known Trivium stream cipher. Trivium is one of the stream ciphers selected in a final portfolio resulting from a multi-year project in Europe called the ecrypt project. Trivium's structural simplicity makes it a popular cipher to cryptanalyse, but to date, there are no attacks in the public literature which are faster than exhaustive keysearch. Algebraic analyses are performed on the Trivium stream cipher, which uses a nonlinear state-update and linear output function to produce keystream. Two algebraic investigations are performed: an examination of the sliding property in the initialisation process and algebraic analyses of Trivium-like streamciphers using a combination of the algebraic techniques previously applied separately by Berbain et al. and Raddum. For certain iterations of Trivium's state-update function, we examine the sets of slid pairs, looking particularly to form chains of slid pairs. No chains exist for a small number of iterations.This has implications for the period of keystreams produced by Trivium. Secondly, using our combination of the methods of Berbain et al. and Raddum, we analysed Trivium-like ciphers and improved on previous on previous analysis with regards to forming systems of equations on these ciphers. Using these new systems of equations, we were able to successfully recover the initial state of Bivium-A.The attack complexity for Bivium-B and Trivium were, however, worse than exhaustive keysearch. We also show that the selection of stages which are used as input to the output function and the size of registers which are used in the construction of the system of equations affect the success of the attack. The second contribution of this thesis is the examination of state convergence. State convergence is an undesirable characteristic in keystream generators for stream ciphers, as it implies that the effective session key size of the stream cipher is smaller than the designers intended. We identify methods which can be used to detect state convergence. As a case study, theMixer streamcipher, which uses nonlinear state-update and output functions to produce keystream, is analysed. Mixer is found to suffer from state convergence as the state-update function used in its initialisation process is not one-to-one. A discussion of several other streamciphers which are known to suffer from state convergence is given. From our analysis of these stream ciphers, three mechanisms which can cause state convergence are identified.The effect state convergence can have on stream cipher cryptanalysis is examined. We show that state convergence can have a positive effect if the goal of the attacker is to recover the initial state of the keystream generator. The third contribution of this thesis is the examination of the distributions of bit patterns in the sequences produced by nonlinear filter generators (NLFGs) and linearly filtered nonlinear feedback shift registers. We show that the selection of stages used as input to a keystream generator's output function can affect the distribution of bit patterns in sequences produced by these keystreamgenerators, and that the effect differs for nonlinear filter generators and linearly filtered nonlinear feedback shift registers. In the case of NLFGs, the keystream sequences produced when the output functions take inputs from consecutive register stages are less uniform than sequences produced by NLFGs whose output functions take inputs from unevenly spaced register stages. The opposite is true for keystream sequences produced by linearly filtered nonlinear feedback shift registers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a model for the generation of a MAC tag using a stream cipher. The input message is used indirectly to control segments of the keystream that form the MAC tag. Several recent proposals can be considered as instances of this general model, as they all perform message accumulation in this way. However, they use slightly different processes in the message preparation and finalisation phases. We examine the security of this model for different options and against different types of attack, and conclude that the indirect injection model can be used to generate MAC tags securely for certain combinations of options. Careful consideration is required at the design stage to avoid combinations of options that result in susceptibility to forgery attacks. Additionally, some implementations may be vulnerable to side-channel attacks if used in Authenticated Encryption (AE) algorithms. We give design recommendations to provide resistance to these attacks for proposals following this model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Non-linear feedback shift register (NLFSR) ciphers are cryptographic tools of choice of the industry especially for mobile communication. Their attractive feature is a high efficiency when implemented in hardware or software. However, the main problem of NLFSR ciphers is that their security is still not well investigated. The paper makes a progress in the study of the security of NLFSR ciphers. In particular, we show a distinguishing attack on linearly filtered NLFSR (or LF-NLFSR) ciphers. We extend the attack to a linear combination of LF-NLFSRs. We investigate the security of a modified version of the Grain stream cipher and show its vulnerability to both key recovery and distinguishing attacks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stream ciphers are symmetric key cryptosystems that are used commonly to provide confidentiality for a wide range of applications; such as mobile phone, pay TV and Internet data transmissions. This research examines the features and properties of the initialisation processes of existing stream ciphers to identify flaws and weaknesses, then presents recommendations to improve the security of future cipher designs. This research investigates well-known stream ciphers: A5/1, Sfinks and the Common Scrambling Algorithm Stream Cipher (CSA-SC). This research focused on the security of the initialisation process. The recommendations given are based on both the results in the literature and the work in this thesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examine the security of the 64-bit lightweight block cipher PRESENT-80 against related-key differential attacks. With a computer search we are able to prove that for any related-key differential characteristic on full-round PRESENT-80, the probability of the characteristic only in the 64-bit state is not higher than 2−64. To overcome the exponential (in the state and key sizes) computational complexity of the search we use truncated differences, however as the key schedule is not nibble oriented, we switch to actual differences and apply early abort techniques to prune the tree-based search. With a new method called extended split approach we are able to make the whole search feasible and we implement and run it in real time. Our approach targets the PRESENT-80 cipher however,with small modifications can be reused for other lightweight ciphers as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, we study the security of the IDEA block cipher when it is used in various simple-length or double-length hashing modes. Even though this cipher is still considered as secure, we show that one should avoid its use as internal primitive for block cipher based hashing. In particular, we are able to generate instantaneously free-start collisions for most modes, and even semi-free-start collisions, pseudo-preimages or hash collisions in practical complexity. This work shows a practical example of the gap that exists between secret-key and known or chosen-key security for block ciphers. Moreover, we also settle the 20-year-old standing open question concerning the security of the Abreast-DM and Tandem-DM double-length compression functions, originally invented to be instantiated with IDEA. Our attacks have been verified experimentally and work even for strengthened versions of IDEA with any number of rounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dragon stream cipher is one of the focus ciphers which have reached Phase 2 of the eSTREAMproject. In this paper, we present a new method of building a linear distinguisher for Dragon. The distinguisher is constructed by exploiting the biases of two S-boxes and the modular addition which are basic components of the nonlinear function F. The bias of the distinguisher is estimated to be around 2−75.32 which is better than the bias of the distinguisher presented by Englund and Maximov. We have shown that Dragon is distinguishable from a random cipher by using around 2150.6 keystream words and 259 memory. In addition, we present a very efficient algorithm for computing the bias of linear approximation of modular addition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New criteria of extended resiliency and extended immunity of vectorial Boolean functions, such as S-boxes for stream or block ciphers, were recently introduced. They are related to a divide-and-conquer approach to algebraic attacks by conditional or unconditional equations. Classical resiliency turns out to be a special case of extended resiliency and as such requires more conditions to be satisfied. In particular, the algebraic degrees of classically resilient S-boxes are restricted to lower values. In this paper, extended immunity and extended resiliency of S-boxes are studied and many characterisations and properties of such S-boxes are established. The new criteria are shown to be necessary and sufficient for resistance against the divide-and-conquer algebraic attacks by conditional or unconditional equations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NLS is one of the stream ciphers submitted to the eSTREAM project. We present a distinguishing attack on NLS by Crossword Puzzle (CP) attack method which is introduced in this paper. We build the distinguisher by using linear approximations of both the non-linear feedback shift register (NFSR) and the nonlinear filter function (NLF). Since the bias of the distinguisher depends on the Konst value, which is a key-dependent word, we present the graph showing how the bias of distinguisher vary with Konst. In result, we estimate the bias of the distinguisher to be around O(2^−30). Therefore, we claim that NLS is distinguishable from truly random cipher after observing O(2^60) keystream words. The experiments also show that our distinguishing attack is successful on 90.3% of Konst among 2^32 possible values. We extend the CP attack to NLSv2 which is a tweaked version of NLS. In result, we build a distinguisher which has the bias of around 2− 48. Even though this attack is below the eSTREAM criteria (2^−40), the security margin of NLSv2 seems to be too low.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The power of sharing computation in a cryptosystem is crucial in several real-life applications of cryptography. Cryptographic primitives and tasks to which threshold cryptosystems have been applied include variants of digital signature, identification, public-key encryption and block ciphers etc. It is desirable to extend the domain of cryptographic primitives which threshold cryptography can be applied to. This paper studies threshold message authentication codes (threshold MACs). Threshold cryptosystems usually use algebraically homomorphic properties of the underlying cryptographic primitives. A typical approach to construct a threshold cryptographic scheme is to combine a (linear) secret sharing scheme with an algebraically homomorphic cryptographic primitive. The lack of algebraic properties of MACs rules out such an approach to share MACs. In this paper, we propose a method of obtaining a threshold MAC using a combinatorial approach. Our method is generic in the sense that it is applicable to any secure conventional MAC by making use of certain combinatorial objects, such as cover-free families and their variants. We discuss the issues of anonymity in threshold cryptography, a subject that has not been addressed previously in the literature in the field, and we show that there are trade-offis between the anonymity and efficiency of threshold MACs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Preneel, Govaerts and Vandewalle (PGV) analysed the security of single-block-length block cipher based compression functions assuming that the underlying block cipher has no weaknesses. They showed that 12 out of 64 possible compression functions are collision and (second) preimage resistant. Black, Rogaway and Shrimpton formally proved this result in the ideal cipher model. However, in the indifferentiability security framework introduced by Maurer, Renner and Holenstein, all these 12 schemes are easily differentiable from a fixed input-length random oracle (FIL-RO) even when their underlying block cipher is ideal. We address the problem of building indifferentiable compression functions from the PGV compression functions. We consider a general form of 64 PGV compression functions and replace the linear feed-forward operation in this generic PGV compression function with an ideal block cipher independent of the one used in the generic PGV construction. This modified construction is called a generic modified PGV (MPGV). We analyse indifferentiability of the generic MPGV construction in the ideal cipher model and show that 12 out of 64 MPGV compression functions in this framework are indifferentiable from a FIL-RO. To our knowledge, this is the first result showing that two independent block ciphers are sufficient to design indifferentiable single-block-length compression functions.