59 resultados para CHROMATE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A resistência e o mecanismo de corrosão das ligas de alumínio 2024, 7010, 7050 e 7475 foram estudados em solução de NaCl. Os efeitos do tratamento térmico nas ligas, concentração de oxigênio, pH, adição de oxi-ânions e temperatura do meio constituem algumas das variáveis estudadas. Primeiramente, procedeu-se à caracterização físicoquímica dos materiais através de análise química e metalográfica, mediante microscopia eletrônica de varredura e espectroscopia de energia dispersiva. As ligas 2024, 7010, 7050 e 7475 como recebidas, recozidas e envelhecidas, revelaram a existência de partículas ternárias e quaternárias, constituídas por Al:Cu:Fe e Mg ou Zn. Também foi observado um maior número de partículas pequenas de composição variável situando-se, preferencialmente, nos contornos dos grãos. Os resultados dos ensaios de corrosão em meios aerados e desaerados indicam que o cromato é efetivo como inibidor da corrosão localizada em ambas ligas e que o molibdato somente na liga 7050. O efeito inibidor do tungstato se revela em meio desaerado e é comparativamente menor daquele observado com os outros oxi-ânions. As análises quantitativas de superfície das ligas após os ensaios de imersão indicam que ainda na presença de inibidor, se pites foram nucleados, eles crescem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are several techniques to characterize the elastic modulus of wood and those currently using the natural frequencies of vibration stand out as they are non-destructive techniques, producing results that can be repeated and compared over time. This study reports on the effectiveness of the testing methods based on the natural frequencies of vibration versus static bending to obtain the elastic properties of reforested structural wood components usually employed in civil construction. The following components were evaluated: 24 beams of Eucalyptus sp. with nominal dimensions (40 x 60 x 2.000 mm) and 14 beams of Pinus oocarpa with nominal dimensions (45 x 90 x 2.300 mm) both without treatment; 30 boards with nominal dimensions (40 x 240 x 2.010 mm) and 30 boards with nominal dimensions (40 x 240 x 3.050 mm), both of Pinus oocarpa and with chromate copper arsenate (CCA) preservative treatment. The results obtained in thiswork show good correlation when compared to the results obtained by the static bending mechanical method, especially when applying the natural frequency of longitudinal vibration. The use of longitudinal frequency was reliable and practical, therefore recommended for determining the modulus of elasticity of wood structural elements. It was also found that no specific support is needed for the specimens using the longitudinal frequency, as well as no previous calibrations, reducing the execution time and enabling to test many samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nowadays, it is clear that the target of creating a sustainable future for the next generations requires to re-think the industrial application of chemistry. It is also evident that more sustainable chemical processes may be economically convenient, in comparison with the conventional ones, because fewer by-products means lower costs for raw materials, for separation and for disposal treatments; but also it implies an increase of productivity and, as a consequence, smaller reactors can be used. In addition, an indirect gain could derive from the better public image of the company, marketing sustainable products or processes. In this context, oxidation reactions play a major role, being the tool for the production of huge quantities of chemical intermediates and specialties. Potentially, the impact of these productions on the environment could have been much worse than it is, if a continuous efforts hadn’t been spent to improve the technologies employed. Substantial technological innovations have driven the development of new catalytic systems, the improvement of reactions and process technologies, contributing to move the chemical industry in the direction of a more sustainable and ecological approach. The roadmap for the application of these concepts includes new synthetic strategies, alternative reactants, catalysts heterogenisation and innovative reactor configurations and process design. Actually, in order to implement all these ideas into real projects, the development of more efficient reactions is one primary target. Yield, selectivity and space-time yield are the right metrics for evaluating the reaction efficiency. In the case of catalytic selective oxidation, the control of selectivity has always been the principal issue, because the formation of total oxidation products (carbon oxides) is thermodynamically more favoured than the formation of the desired, partially oxidized compound. As a matter of fact, only in few oxidation reactions a total, or close to total, conversion is achieved, and usually the selectivity is limited by the formation of by-products or co-products, that often implies unfavourable process economics; moreover, sometimes the cost of the oxidant further penalizes the process. During my PhD work, I have investigated four reactions that are emblematic of the new approaches used in the chemical industry. In the Part A of my thesis, a new process aimed at a more sustainable production of menadione (vitamin K3) is described. The “greener” approach includes the use of hydrogen peroxide in place of chromate (from a stoichiometric oxidation to a catalytic oxidation), also avoiding the production of dangerous waste. Moreover, I have studied the possibility of using an heterogeneous catalytic system, able to efficiently activate hydrogen peroxide. Indeed, the overall process would be carried out in two different steps: the first is the methylation of 1-naphthol with methanol to yield 2-methyl-1-naphthol, the second one is the oxidation of the latter compound to menadione. The catalyst for this latter step, the reaction object of my investigation, consists of Nb2O5-SiO2 prepared with the sol-gel technique. The catalytic tests were first carried out under conditions that simulate the in-situ generation of hydrogen peroxide, that means using a low concentration of the oxidant. Then, experiments were carried out using higher hydrogen peroxide concentration. The study of the reaction mechanism was fundamental to get indications about the best operative conditions, and improve the selectivity to menadione. In the Part B, I explored the direct oxidation of benzene to phenol with hydrogen peroxide. The industrial process for phenol is the oxidation of cumene with oxygen, that also co-produces acetone. This can be considered a case of how economics could drive the sustainability issue; in fact, the new process allowing to obtain directly phenol, besides avoiding the co-production of acetone (a burden for phenol, because the market requirements for the two products are quite different), might be economically convenient with respect to the conventional process, if a high selectivity to phenol were obtained. Titanium silicalite-1 (TS-1) is the catalyst chosen for this reaction. Comparing the reactivity results obtained with some TS-1 samples having different chemical-physical properties, and analyzing in detail the effect of the more important reaction parameters, we could formulate some hypothesis concerning the reaction network and mechanism. Part C of my thesis deals with the hydroxylation of phenol to hydroquinone and catechol. This reaction is already industrially applied but, for economical reason, an improvement of the selectivity to the para di-hydroxilated compound and a decrease of the selectivity to the ortho isomer would be desirable. Also in this case, the catalyst used was the TS-1. The aim of my research was to find out a method to control the selectivity ratio between the two isomers, and finally to make the industrial process more flexible, in order to adapt the process performance in function of fluctuations of the market requirements. The reaction was carried out in both a batch stirred reactor and in a re-circulating fixed-bed reactor. In the first system, the effect of various reaction parameters on catalytic behaviour was investigated: type of solvent or co-solvent, and particle size. With the second reactor type, I investigated the possibility to use a continuous system, and the catalyst shaped in extrudates (instead of powder), in order to avoid the catalyst filtration step. Finally, part D deals with the study of a new process for the valorisation of glycerol, by means of transformation into valuable chemicals. This molecule is nowadays produced in big amount, being a co-product in biodiesel synthesis; therefore, it is considered a raw material from renewable resources (a bio-platform molecule). Initially, we tested the oxidation of glycerol in the liquid-phase, with hydrogen peroxide and TS-1. However, results achieved were not satisfactory. Then we investigated the gas-phase transformation of glycerol into acrylic acid, with the intermediate formation of acrolein; the latter can be obtained by dehydration of glycerol, and then can be oxidized into acrylic acid. Actually, the oxidation step from acrolein to acrylic acid is already optimized at an industrial level; therefore, we decided to investigate in depth the first step of the process. I studied the reactivity of heterogeneous acid catalysts based on sulphated zirconia. Tests were carried out both in aerobic and anaerobic conditions, in order to investigate the effect of oxygen on the catalyst deactivation rate (one main problem usually met in glycerol dehydration). Finally, I studied the reactivity of bifunctional systems, made of Keggin-type polyoxometalates, either alone or supported over sulphated zirconia, in this way combining the acid functionality (necessary for the dehydrative step) with the redox one (necessary for the oxidative step). In conclusion, during my PhD work I investigated reactions that apply the “green chemistry” rules and strategies; in particular, I studied new greener approaches for the synthesis of chemicals (Part A and Part B), the optimisation of reaction parameters to make the oxidation process more flexible (Part C), and the use of a bioplatform molecule for the synthesis of a chemical intermediate (Part D).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aluminum coatings were applied to 2024-T3 and 7075-T6 aluminum alloys via the Cold Spray process. The coatings were applied to substrateswith various surface preparation and Cold Spray carrier gas combinations. Some samples were coated with an additional sealant with and without a chromate conversion layer. An exhaustive corrosion analysis was then performed which utilized a number of long termand accelerated tests in order to characterize the corrosion protection of the coatings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Limitations have been detected in a recently published method for macroion valence determination by an ultracentrifugal procedure for quantifying the Dorman distribution of small ions in macroion solutions dialyzed against buffer supplemented with chromate as an indicator ion. The limitation reflects an implicit assumption that sedimentation velocity affords an unequivocal means of separating effects of chromate binding from those reflecting the Dorman redistribution of small ions. Although the assumed absence of significant Dorman redistribution of small ions across the sedimenting macroion boundary seemingly holds for some systems, this approximation is demonstrably invalid for others. Despite preliminary signs of promise, the ultracentrifugal procedure does not afford a simple, readily applied solution to the problem of unequivocal macroion valence determination. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reviews various aspects of anodizing of magnesium alloys, such as the basics, processes, properties and applications. It systematically summarises the existing fundamental studies and technical developments of anodizing of magnesium alloys, and concludes that new anodizing processes based on electrolytic plasma anodizing that convert the surface of a magnesium alloy into a hard ceramic coating in an electrolytic bath using high energy electric discharges can offer improved wear and corrosion resistance. These new anodized coatings are often claimed to perform better than the traditional ones obtained through older anodizing processes, such as DOW17 or HAE. The new anodizing techniques are chromate free and hence environment friendly. It is expected that more cost-effective, environment-friendly and non-toxic anodizing techniques will be developed and applied to magnesium alloy components in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An investigation has been undertaken to determine the major factors influencing the corrosion resistance of duplex-zinc coatings on steel substrates.Premature failure of these systems has been attributed to the presence of defects such as craters and pinholes in the polymer film and debonding of the polymer film from the zinc substrate.Defects found on commercially produced samples have been carefully characterised using metallographic and scanning electron microscopy techniques. The influence of zinc substrate surface roughness, polymer film thickness and degassing of conversion coatings films on the incidence of defects has been determined.Pretreatments of the chromate, chromate-phosphate, non chromate, and alkali-oxide types were applied and the conversion coatings produced characterised with respect to their nature and composition. The effect of degassing on the properties of the films was also investigated. Electrochemical investigations were carried out to determine the effect of the presence of the eta or zeta phase as the outermost layer of the galvanized coating.Flow characteristics of polyester on zinc electroplated hot-dip continuous and batch galvanized and zinc sprayed samples were investigated using hot-stage microscopy. The effects of different pretreatments and degassing after conversion coating formation on flow characteristics were determined.Duplex coatings were subjected to the acetic acid salt spray test. The effect on adhesion was determined using an indentation debonding test and the results compared with those obtained using cross-cut/peel and pull-off tests. The locus of failure was determined using scanning electron microscopy and X-ray photoelectron spectroscopy techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanisms involved in the production of chromate-phosphate conversion coatings on aluminium have been investigated. A sequence of coating nucleation and growth has been outlined and the principle roles of the constituent ingredients of the chromate-phosphate solution have been shown. The effect of dissolved aluminium has been studied and its role in producing sound conversion coatings has been shown. Metallic contamination has been found to have a dramatic influence on chromate-phosphate coatings when particular levels have been exceeded. Coating formation was seen to be affected in proportion to the level of contaminaton; no evidence of sudden failure was noted. The influence of substrate and the effect of an acidic cleaner prior to conversion coating have been studied and explained. It was found that the cleaner ages rapidly and that this must .be allowed for when attempting to reproduce industrial conditions in the laboratory. A study was carried out on the flowing characteristics of polyester powders of various size distributions as they melt using the hot-stage microscopy techniques developed at Aston. It was found that the condition of the substrate (ie extent of pretreatment), had a significant effect on particle flow. This was explained by considering the topography of the substrate surface. A number of 'low-bake' polyester powders were developed and tested for mechanical, physical and chemical resistance. The best formulation had overall properties which were as good as the standard polyester in many respects. However chemical resistance was found to be slightly lower. The charging characteristics of powder paints during application by means of electrostatic spraying was studied by measuring the charge per unit mass and relating this to the surface area. A high degree of correlation was found between charge carried and surface area, and the charge retained was related to the powder's formulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aerobic selective oxidation (selox) of alcohols represents an environmentally benign and atom efficient chemical valorisation route to commercially important allylic aldehydes, such as crotonaldehyde and cinnamaldehyde, which find application in pesticides, fragrances and food additives. Palladium nanoparticles are highly active and selective heterogeneous catalysts for such oxidative dehydrogenations, permitting the use of air (or dioxygen) as a green oxidant in place of stoichiometric chromate permanganate saltsor H2O2. Here we discuss how time-resolved, in-situ X-ray spectroscopies (XAS and XPS) reveal dynamic restructuring of dispersed Pd nanoparticles and Pd single-crystals in response to changing reaction environments, and thereby identify surface PdO as the active species responsible for palladium catalysed crotyl alcohol selox (Figure 1); on-stream reduction to palladium metal under oxygen-poor regimes thus appears the primary cause of catalyst deactivation. This insight has guided the subsequent application of surfactant-templating and inorganic nanocrystal methodologies to optimize the density of desired active PdO sites for the selective oxidation of natural products such as sesquiterpenoids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Corrosion inhibitors are an important method for minimizing corrosion; however traditional inhibitors such as chromates pose environmental problems. Rare earth metals provide an important, environmentally-friendly alternative. This book provides a comprehensive review of current research and examines how rare earth metals can be used to prevent corrosion and applied to protect metals in such industries as aerospace and construction. Chapter 1 begins by examining the important need to replace chromate, and then goes on to discuss the chemistry of the rare earth metals and their related compounds. Chapter 2 considers the techniques that can be used to identify corrosion inhibition mechanisms and to test the levels of protection offered to different metals by rare earth compounds. Subsequent chapters consider in more detail how rare earth elements can be used as corrosion inhibitors in different forms and for different metals. This includes discussion on the potential of rare earth elements for self-healing, tunable and multifunctional coatings. Finally, chapter 10 considers the cost and availability of the rare earths and the potential health and environmental risks associated with extracting them. Provides a review of current research and examines how rare earth metals can be used to prevent corrosion and applied to protect metals in such industries as aerospace and construction. Includes discussion on the potential of rare earth elements for self-healing, tunable and multifunctional coatings. Considers the cost and availability of the rare earths and the potential health and environmental risks associated with extracting them.