994 resultados para CHEMICAL COMMUNICATION
Resumo:
In general, the exocrine glands of social insects are structures involved in the chemical communication associated with social life. Here, we report the discovery of an unknown tegumental gland that is present in the female imagoes of Cornitermes cumulans and occurs next to the well-developed tergal glands that have previously been described. The tegumental glands release their secretion in the intersegmental membrane and are composed of bicellular units, a secretory cell and a canal cell, that are closely located to the epidermal cells in the inferior part of the eighth and ninth tergites. The ultrastructure of the glandular cells showed abundant smooth endoplasmic reticulum, suggesting that the secretion may be pheromonal, although its function is still unknown. These exocrine structures are facing the tergal glands, and we hypothesized that they act synergistically with the tergal glands to generate short-range attraction during tandem behavior. Microsc. Res. Tech. 73: 1005-1008, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
RECAW - CNPq
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Biológicas (Botânica) - IBB
Resumo:
Pós-graduação em Zootecnia - FMVZ
Resumo:
Pós-graduação em Aquicultura - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In the present study, trail pheromone blends are identified for the first time in termites. In the phylogenetically complex Nasutitermitinae, trail-following pheromones are composed of dodecatrienol and neocembrene, the proportions of which vary according to species, although neocembrene is always more abundant than dodecatrienol (by 25-250-fold). Depending on species, termites were more sensitive to dodecatrienol or to neocembrene but the association of both components always elicited significantly higher trail following, with a clear synergistic effect in most of the studied species. A third component, trinervitatriene, was identified in the sternal gland secretion of several species, but its function remains unknown. The secretion of trail pheromone blends appears to be an important step in the evolution of chemical communication in termites. The pheromone optimizes foraging, and promotes their ecological success. (C) 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99, 20-27.
Resumo:
Preliminary observations of the harvestman Leiobunum vittatum found that individuals rub their bodies against the substrate, presenting the possibility of chemical marking. To determine whether or not L. vittatum individuals can detect substrate-borne chemical cues, we compared responses of L. vittatum males and females to substrate-borne male and female cues. We found that individuals of L. vittatum do respond to conspecific cues and that their responses are sex-specific. In response to substrate-borne conspecific cues, male L. vittatum spent more time, engaged in more scraping with their sensory legs I, and engaged in pedipalpal tapping more often in the presence versus absence of conspecific cues (male and female equally). Furthermore, in the presence of conspecific cues, males engaged in two behaviors never observed in females-(a) "fast approach" and (b) "jerking", the latter of which was never observed in the presence of cricket cues. In contrast to males, females did not spend more time on conspecific cues, but did spend more time tapping their pedipalps in the presence of male vs female cues, suggesting an ability to distinguish between them. A final experiment explored the possibility that females could discriminate among males of varying histories of agonistic interactions based upon their chemical cues. We found no support for this hypothesis. Our results demonstrate that L. vitattum do respond to conspecific cues, and introduce the possibility that intraspecific communication may be mediated in part by chemical cues.
Resumo:
Diabrotica speciosa (Germar) is an economically important pest of Neotropical cultures and represents a quarantine risk for Neartic and Paleartic Regions. Despite its agricultural importance, few studies have been done on mating behavior and chemical communication, which has delayed the development of behavioral techniques for population management, such as the use of pheromone traps. In this study, we determined 1) the age at first mating; 2) diel rhythm of matings; 3) number of matings over 7 d; 4) the sequence of D. speciosa activities during premating, mating, and postmating; 5) the duration of each activity; and 6) response to male and female conspecific volatiles in Y-tube olfactometer. The first mating occurred between the third and seventh day after adult emergence and the majority of pairs mated on the fourth day after emergence. Pairs of D. speciosa showed a daily rhythm of mating with greater sexual activity between the end of the photophase and the first half of the scotophase. During the 7 d of observation, most pairs mated only once, although 30% mated two, three, or four times. In a Y-tube olfactometer, males were attracted by virgin females as well as by the volatile compounds emitted by females. Neither males nor their volatiles were attractive to either sex. Our observation provide information about mating behavior of D. speciosa, which will be useful in future research in chemical communication, such as identification of the pheromone and development of management techniques for this species using pheromone traps.
Resumo:
The ventilation rate (VR) of an ostariophysan fish, the speckled catfish Pseudoplaty - stoma coruscans, exposed to a chemical alarm cue was measured in the present study in multiple contexts. The influence of the extraction techniques, skin donor food intake and quantity of the alarm cue (skin extract) on this autonomic response was considered. Overall, the catfish VR decreased significantly when exposed to the skin extract (chemical alarm cue) compared with exposure to distilled water (control). No effect of the extraction technique was found. Increasing doses of the skin extract induced a VR reduction of similar magnitude. However, extract obtained from daily-fed fish induced a significant decrease in the VR, whereas extract obtained from foodrestricted fish did not induce any change in the VR. Thus, food intake was associated with the production of a more easily recognizable alarm cue in the speckled catfish. Interestingly, this effect was not related to differences in the number of club cells in the donor catfish epidermis. Dashing, or rapid swimming, a normal component of the alarm response in fish, including this catfish species, was not observed here, and hypoventilation was always associated with no swimming reaction. Together, these results suggest that hypoventilation is a reaction to a chemical alarm cue, likely resulting in improved crypsis, causing the fish to become less easily perceived by a potential predator that usually strikes prey in response to movement.
Resumo:
Insect cuticular hydrocarbons including relatively non-volatile chemicals play important roles in cuticle protection and chemical communication. The conventional procedures for extracting cuticular compounds from insects require toxic solvents, or non-destructive techniques that do not allow storage of subsequent samples, such as the use of SPME fibers. In this study, we describe and tested a non-lethal process for extracting cuticular hydrocarbons with styrene-divinylbenzene copolymers, and illustrate the method with two species of bees and one species of beetle. The results demonstrate that these compounds can be efficiently trapped by ChromosorbA (R) (SUPELCO) and that this method can be used as an alternative to existing methods.