978 resultados para CFD Modelling


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This was a comparative study of the possibility of a net zero energy house in Queensland, Australia. It examines the actual energy use and thermal comfort conditions of an occupied Brisbane home and compares performance with the 10 star scale rating scheme for Australian residential buildings. An adaptive comfort psychometric chart was developed for this analysis. The house's capacity for the use of the natural ventilation was studied by CFD modelling. This study showed that the house succeeded in achieving the definition of net zero energy on an annual and monthly basis for lighting, cooking and space heating / cooling and for 70% of days for lighting, hot water and cooking services.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cell-implant adhesive strength is important for prostheses. In this paper, an investigation is described into the adhesion of bovine chondrocytes to Ti6Al4V-based substrates with different surface roughnesses and compositions. Cells were cultured for 2 or 5 days, to promote adhesion. The ease of cell removal was characterised, using both biochemical (trypsin) and mechanical (accelerated buoyancy and liquid flow) methods. Computational fluid dynamics (CFD) modelling has been used to estimate the shear forces applied to the cells by the liquid flow. A comparison is presented between the ease of cell detachment indicated using these methods, for the three surfaces investigated. © 2008 Materials Research Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reliable means of predicting ingestion in cavities adjacent to the main gas path are increasingly being sought by engineers involved in the design of gas turbines. In this paper, analysis is to be presented that results from an extended research programme, MAGPI, sponsored by the EU and several leading gas turbine manufactures and universities. Extensive use is made of CFD modelling techniques to understand the aerodynamic behaviour of a turbine stator well cavity, focusing on the interaction of cooling air supply with the main annulus gas. The objective of the study has been to benchmark a number of CFD codes and numerical techniques covering RANS and URANS calculations with different turbulence models in order to assess the suitability of the standard settings used in the industry for calculating the mechanics of the flow travelling between cavities in a turbine through the main gas path. The modelling methods employed have been compared making use of experimental data gathered from a dedicated two-stage turbine rig, running at engine representative conditions. Extensive measurements are available for a range of flow conditions and alternative cooling arrangements. The limitations of the numerical methods in calculating the interaction of the cooling flow egress and the main stream gas, and subsequent ingestion into downstream cavities in the engine (i.e. re-ingestion), have been exposed. This has been done without losing sight of the validation of the CFD for its use for predicting heat transfer, which was the main objective of the partners of the MAGPI Work- Package 1 consortium. Copyright © 2012 by ASME.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Evaluation of temperature distribution in cold rooms is an important consideration in the design of food storage solutions. Two common approaches used in both industry and academia to address this question are the deployment of wireless sensors, and modelling with Computational Fluid Dynamics (CFD). However, for a realworld evaluation of temperature distribution in a cold room, both approaches have their limitations. For wireless sensors, it is economically unfeasible to carry out large-scale deployment (to obtain a high resolution of temperature distribution); while with CFD modelling, it is usually not accurate enough to get a reliable result. In this paper, we propose a model-based framework which combines the wireless sensors technique with CFD modelling technique together to achieve a satisfactory trade-off between minimum number of wireless sensors and the accuracy of temperature profile in cold rooms. A case study is presented to demonstrate the usability of the framework.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CFD modelling of 'real-life' processes often requires solutions in complex three dimensional geometries, which can often result in meshes where aspects of it are badly distorted. Cell-centred finite volume methods, typical of most commercial CFD tools, are computationally efficient, but can lead to convergence problems on meshes which feature cells with high non-orthogonal shapes. The vertex-based finite volume method handles distorted meshes with relative ease, but is computationally expensive. A combined vertex-based - cell-centred (VB-CC) technique, detailed in this paper, allows solutions on distorted meshes that defeat purely cell-centred physical models to be employed in the solution of other transported quantities. The VB-CC method is validated with benchmark solutions for thermally driven flow and turbulent flow. An early application of this hybrid technique is to three-dimensional flow over an aircraft wing, although it is planned to use it in a wide variety of processing applications in the future.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Monolithic catalysts are widely used as structured catalysts, especially in the abatement of pollutants. Probing what happens inside these monoliths during operation is, therefore, vital for modelling and prediction of the catalyst behavior. SpaciMS is a spatially resolved capillary-inlet mass spectroscopy system allowing for the generation of spatially resolved maps of the reactions within monoliths. In this study SpaciMS results combined with 3D CFD modelling demonstrate that SpaciMS is a highly sensitive and minimally invasive technique that can provide reaction maps as well as catalytic temporal behavior. Herein we illustrate this by examining kinetic oscillations during a CO oxidation reaction over a Pt/Rh on alumina catalyst supported on a cordierite monolith. These oscillations were only observed within the monolith by SpaciMS between 30 and 90% CO conversion. Equivalent experiments performed in a plug-flow reactor using this catalyst in a crushed form over a similar range of reaction conditions did not display any oscillations demonstrating the importance of intra monolith analysis. This work demonstrates that the SpaciMS offers an accurate and comprehensive picture of structured catalysts under operation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Die sogenannte natürliche Lüftung - Lüftung infolge Temperatur- und Windeinfluss - über geöffnete Fenster und Türen ist im Wohnbereich noch immer die häufigste Form des Lüftens. Die Wirkung des Lüftens wird einerseits von den baulichen Gegebenheiten, z.B. der Fenstergröße, Öffnungsfläche und Laibungstiefe sowie andererseits durch den Nutzer, der z.B. eine Gardine oder Rollos anbringt, beeinflusst. Über den genauen Einfluss von verschiedenen Faktoren auf den Luftwechsel existieren zur Zeit noch keine gesicherten Erkenntnisse. Die Kenntnis des Luftwechsels ist jedoch für die Planung und Ausführung von Gebäuden in Hinblick auf das energiesparende Bauen sowie unter bauphysikalischen und hygienischen Aspekten wichtig. Der Einsatz von Dreh-Kippfenstern sowie das Lüften über die Kippstellung ist in Deutschland üblich, so dass die Bestimmung des Luftwechsels über Kippfenster von großem Interesse ist. Ziel dieser Arbeit ist es, den thermisch induzierten Luftwechsel über ein Kippfenster unter Berücksichtigung verschiedener Randbedingungen zu beschreiben. Hierbei werden Variationen der Kippweite, Laibungs- und Heizungsanordnung berücksichtigt. Die Arbeit gliedert sich in drei Teile: im ersten Teil werden messtechnische Untersuchungen durchgeführt, im zweiten Teil exemplarisch einige messtechnisch untersuchten Varianten mit CFD simuliert und im dritten Teil ein verbesserter Modellansatz zur Beschreibung des Luftwechsels aus den Messwerten abgeleitet. Die messtechnischen Untersuchungen bei einer Kippweite von 10 cm zeigen, dass bei dem Vorhandensein einer raumseitigen Laibung oder einem unterhalb des Fensters angeordneten Heizkörpers mit einer Reduktion des Volumenstroms von rund 20 Prozent gegenüber einem Fenster ohne Laibung bzw. ohne Heizkörper gerechnet werden muss. Die Kombination von raumseitiger Laibung und Heizung vermindert das Luftwechselpotential um ca. 40 Prozent. Simuliert wird die Variante ohne Laibung und ohne Heizung für die Kippweiten 6 cm und 10 cm. Die Ergebnisse der mit CFD simulierten Tracergas-Messung weisen für beide Kippweiten im Mittel rund 13 Prozent höhere Zuluftvolumenströme im Vergleich zu den Messwerten auf. Die eigenen Messdaten bilden die Grundlage für die Anpassung eines Rechenmodells. Werden vor Ort die lichte Fensterhöhe und -breite, die Kippweite, die Rahmen- und Laibungstiefe sowie die Abstände der Laibung zum Flügelrahmen gemessen, kann die Öffnungsfläche in Abhängigkeit von der Einbausituation bestimmt werden. Der Einfluss der Heizung - bei einer Anordnung unterhalb des Fensters - wird über den entsprechenden Cd-Wert berücksichtigt.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Experimental wind tunnel and smoke visualisation testing and CFD modelling were conducted to investigate the effect of air flow control mechanism and heat source inside rooms on wind catchers/towers performance. For this purpose, a full-scale wind catcher was connected to a test room and positioned centrally in an open boundary wind tunnel. Pressure coefficients (C-p's) around the wind catcher and air flow into the test room were established. The performance of the wind catcher depends greatly on the wind speed and direction. The incorporation of dampers and egg crate grille at ceiling level reduces and regulates the air flow rate with an average pressure loss coefficient of 0.01. The operation of the wind catcher in the presence of heat sources will potentially lower the internal temperatures in line with the external temperatures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wind catcher systems have been employed in buildings in the Middle East for many centuries and they are known by different names in different parts of the region. Recently there has been an increase in the application of this approach for natural ventilation and passive cooling in the UK and other countries. This paper presents the results of experimental wind tunnel and smoke visualisation testing, combined with CFD modelling, to investigate the performance of the wind catcher. For this purpose, a full-scale commercial system was connected to a test room and positioned centrally in an open boundary wind tunnel. Because much ventilation design involves the use of computational fluid dynamics, the measured performance of the system was also compared against the results of CFD analysis. Configurations included both a heated and unheated space to determine the impact of internal heat sources on airflow rate. Good comparisons between measurement and CFD analysis were obtained. Measurements showed that sufficient air change could be achieved to meet both air quality needs and passive cooling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The method of distributing the outdoor air in classrooms has a major impact on indoor air quality and thermal comfort of pupils. In a previous study, ([11] Karimipanah T, Sandberg M, Awbi HB. A comparative study of different air distribution systems in a classroom. In: Proceedings of Roomvent 2000, vol. II, Reading, UK, 2000. p. 1013-18; [13] Karimipanah T, Sandberg M, Awbi HB, Blomqvist C. Effectiveness of confluent jets ventilation system for classrooms. In: Idoor Air 2005, Beijing, China, 2005 (to be presented).) presented results for four and two types of air distribution systems tested in a purpose built classroom with simulated occupancy as well as computational fluid dynamics (CFD) modelling. In this paper, the same experimental setup has been used to investigate the indoor environment in the classroom using confluent jet ventilation, see also ([12]Cho YJ, Awbi HB, Karimipanah T. The characteristics of wall confluent jets for ventilated enclosures. In: Proceedings of Roomvent 2004, Coimbra, Portugal, 2004.) Measurements of air speed, air temperature and tracer gas concentrations have been carried out for different thermal conditions. In addition, 56 cases of CFD simulations have been carried to provide additional information on the indoor air quality and comfort conditions throughout the classroom, such as ventilation effectiveness, air exchange effectiveness, effect of flow rate, effect of radiation, effect of supply temperature, etc., and these are compared with measured data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport and sedimentation becomes more important with regard to reactor safety research for pressurized and boiling water reactors, when considering the long-term behaviour of emergency core coolant systems during all types of loss of coolant accidents (LOCA). The insulation debris released near the break during a LOCA incident consists of a mixture of a disparate particle population that varies with size, shape, consistency and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb or impinge on the emergency core cooling systems. Open questions of generic interest are for example the particle load on strainers and corresponding pressure-drop, the sedimentation of the insulation debris in a water pool, its possible re-suspension and transport in the sump water flow. A joint research project on such questions is being performed in cooperation with the University of Applied Science Zittau/Görlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation and the development of computational fluid dynamic (CFD) models for the description of particle transport phenomena in coolant flow. While the experiments are performed at the University Zittau/Görlitz, the theoretical work is concentrated at Forschungszentrum Dresden-Rossendorf. In the present paper, the basic concepts for computational fluid dynamic (CFD) modelling are described and experimental results are presented. Further experiments are designed and feasibility studies were performed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A thunderstorm downburst in its simplest form can be modelled as a steady flow impinging air jet. Although this simplification neglects some important atmospheric and physical parameters it has proven to be a useful tool for understanding the kinematics of these events. Assuming this simple impinging jet model also allows numerical models to be developed which can be directly compared with experimental results to validate the use of CFD. Confidence gained from these simulations will allow the use of more complex atmospheric impinging jet models that cannot be directly validated. Thunderstorm downbursts are important for wind engineers because in many parts of the world they produce the design wind speeds used in design standards, but are not structurally represented in these documents.