863 resultados para CERRAMIENTO VISUAL – INVESTIGACIONES - NIÑOS ENTRE 3-5 AÑOS
Resumo:
The electrochemical formation of highly porous CuTCNQ (TCNQ = 7,7,8,8-tetracyanoquinodimethane) and CuTCNQF4 (TCNQF4 = 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane) materials was undertaken via the spontaneous redox reaction between a porous copper template, created using a hydrogen bubbling template technique, and an acetonitrile solution containing TCNQ or TCNQF4. It was found that activation of the surface via vigorous hydrogen evolution that occurs during porous copper deposition and TCNQ mass transport being hindered through the porous network of the copper template influenced the growth of CuTCNQ and CuTCNQF4. This approach resulted in the fabrication of a honeycomb layered type structure where the internal walls consist of very fine crystalline needles or spikes. This combination of microscopic and nanoscopic roughness was found to be extremely beneficial for anti-wetting properties where superhydrophobic materials with contact angles as high as 177° were created. Given that CuTCNQ and CuTCNQF4 have shown potential as molecular based electronic materials in the area of switching and field emission, the creation of a surface that is moisture resistant may be of applied interest.
The electrochemical corrosion behaviour of quaternary gold alloys when exposed to 3.5% NaCl solution
Resumo:
Lower carat gold alloys, specifically 9 carat gold alloys, containing less than 40 % gold, and alloying additions of silver, copper and zinc, are commonly used in many jewellery applications, to offset high costs and poor mechanical properties associated with pure gold. While gold is considered to be chemically inert, the presence of active alloying additions raises concerns about certain forms of corrosion, particularly selective dissolution of these alloys. The purpose of this study was to systematically study the corrosion behaviour of a series of quaternary gold–silver–copper–zinc alloys using dc potentiodynamic scanning in saline (3.5 % NaCl) environment. Full anodic/cathodic scans were conducted to determine the overall corrosion characteristics of the alloy, followed by selective anodic scans and subsequent morphological and compositional analysis of the alloy surface and corroding media to determine the extent of selective dissolution. Varying degrees of selective dissolution and associated corrosion rates were observed after anodic polarisation in 3.5 % NaCl, depending on the alloy composition. The corrosion behaviour of the alloys was determined by the extent of anodic reactions which induce (1) formation of oxide scales on the alloy surface and or (2) dissolution of Zn and Cu species. In general, the improved corrosion characteristics of alloy #3 was attributed to the composition of Zn/Cu in the alloy and thus favourable microstructure promoting the formation of protective oxide/chloride scales and reducing the extent of Cu and Zn dissolution.
Resumo:
Vibrational spectroscopy enables subtle details of the molecular structure of kapundaite to be determined. Single crystals of a pure phase from a Brazilian pegmatite were used. Kapundaite is the Fe3+ member of the wardite group. The infrared and Raman spectroscopy were applied to compare the structure of kapundaite with wardite. The Raman spectrum of kapundaite in the 800–1400 cm−1 spectral range shows two intense bands at 1089 and 1114 cm−1 assigned to the ν1PO43- symmetric stretching vibrations. The observation of two bands provides evidence for the non-equivalence of the phosphate units in the kapundaite structure. The infrared spectrum of kapundaite in the 500–1300 cm−1 shows much greater complexity than the Raman spectrum. Strong infrared bands are found at 966, 1003 and 1036 cm−1 and are attributed to the ν1PO43- symmetric stretching mode and ν3PO43- antisymmetric stretching mode. Raman bands in the ν4 out of plane bending modes of the PO43- unit support the concept of non-equivalent phosphate units in the kapundaite structure. In the 2600–3800 cm−1 spectral range, Raman bands for kapundaite are found at 2905, 3151, 3311, 3449 and 3530 cm−1. These bands are broad and are assigned to OH stretching vibrations. Broad infrared bands are also found at 2904, 3105, 3307, 3453 and 3523 cm−1 and are attributed to water. Raman spectroscopy complimented with infrared spectroscopy has enabled aspects of the structure of kapundaite to be ascertained and compared with that of other phosphate minerals.
Resumo:
Objective To quantitatively assess and compare the quality of life (QoL) of women with a self-reported diagnosis of lower limb lymphedema (LLL), to women with lower limb swelling (LLS), and to women without LLL or LLS following treatment for endometrial cancer. Methods 1399 participants in the Australian National Endometrial Cancer Study were sent a follow-up questionnaire 3–5 years after diagnosis. Women were asked if they had experienced swelling in the lower limbs and, if so, whether they had received a diagnosis of lymphedema by a health professional. The 639 women who responded were categorised as: Women with LLL (n = 68), women with LLS (n = 177) and women without LLL or LLS (n = 394). Multivariable-adjusted generalized linear models were used to compare women’s physical and mental QoL by LLL status. Results On average, women were 65 years of age and 4 years after diagnosis. Women with LLL had clinically lower physical QoL (M= 41.8, SE= 1.4) than women without LLL or LLS (M= 45.1, SE= 0.8, p = .07), however, their mental QoL was within the normative range (M= 49.6; SE= 1.1 p = 1.0). Women with LLS had significantly lower physical (M= 41.0, SE= 1.0, p = .003) and mental QoL (M= 46.8; SE= 0.8, p < .0001) than women without LLL or LLS (Mental QoL: M= 50.6, SE= 0.8). Conclusion Although LLL was associated with reductions in physical QoL, LLS was related to reductions in both physical and mental QoL 3-5 years after cancer treatment. Early referral to evidence-based lymphedema programs may prevent long-term impairments to women’s QoL.
Resumo:
The structures of the compounds from the reaction of the drug dapsone [4-(4-aminophenylsulfonyl)aniline] with 3,5-dinitrosalicylic acid, the salt hydrate [4-(4-aminohenylsulfonyl)anilinium 2-carboxy-4,6-dinitrophenolate monohydrate] (1) and the 1:1 adduct with 5-nitroisophthalic acid [4-(4-aminophenylsulfonyl)aniline 5-nitrobenzene-1,3-dicarboxylic acid] (2) have been determined. Crystals of 1 are triclinic, space group P-1, with unit cell dimensions a = 8.2043(3), b = 11.4000(6), c = 11.8261(6)Å, α = 110.891(5), β = 91.927(3), γ = 98.590(4)deg. and Z = 4. Compound 2 is orthorhombic, space group Pbcn, with unit cell dimensions a = 20.2662(6), b = 12.7161(4), c = 15.9423(5)Å and Z = 8. In 1, intermolecular analinium N-H…O and water O-H…O and O-H…N hydrogen-bonding interactions with sulfone, carboxyl, phenolate and nitro O-atom and aniline N-atom acceptors give a two-dimensional layered structure. With 2, the intermolecular interactions involve both aniline N-H…O and carboxylic acid O-H…O and O-H…N hydrogen bonds to sulfone, carboxyl, nitro and aniline acceptors, giving a three-dimensional network structure. In both structures π--π aromatic ring associations are present.
Resumo:
The structures of the ammonium salts of 3,5-dinitrobenzoic acid, NH4+ C7H3N2O6- (I), 4-nitrobenzoic acid, NH4+ C7H4N2O4- . 2H2O (II) and 2,4-dichlorobenzoic acid, NH4+ C7H3Cl2O2- . 0.5H2O (III), have been determined and their hydrogen-bonded structures are described. All salts form hydrogen-bonded polymeric structures, three-dimensional in (I) and two-dimensional in (II) and (III). With (I), a primary cation-anion cyclic association is formed [graph set R3/4(10)] through N-H...O hydrogen bonds, involving a carboxyl O,O' group on one side and a single carboxyl O-atom on the other. Structure extension involves both N-H...O hydrogen bonds to both carboxyl and nitro O-atom acceptors. With structure (II), the primary inter-species interactions and structure extension into layers lying parallel to (0 0 1) are through conjoined cyclic hydrogen-bonding motifs: R3/4(10) [one cation, a carboxyl (O,O') group and two water molecules] and centrosymmetric R2/4(8) [two cations and two water molecules]. The structure of (III) also has conjoined R3/4(10) and centrosymmetric R2/4(8) motifs in the layered structure but these differ in that he first involves one cation, a carboxyl (O,O') as well as a carboxyl (O) group and one water molecule, the second, two cations and two carboxyl O-groups. The layers lie parallel to (1 0 0). The structures of the salt hydrates (II) and (III) reported in this work, giving two-dimensional layered arrays through conjoined hydrogen-bonded nets provide further illustrations of a previously indicated trend among ammonium salts of carboxylic acids, but the anhydrous three-dimensional structure of (I) is inconsistent.
Resumo:
OBJECTIVE To compare the physical activity levels of overweight and non overweight 3- to 5-y-old children while attending preschool. A secondary aim was to evaluate weight-related differences in hypothesized parental determinants of child physical activity behavior. DESIGN Cross-sectional study. SUBJECTS A total of 245, 3- to 5-y-olds (127 girls, 118 boys) and their parent(s) (242 mothers, 173 fathers) recruited from nine preschools. Overweight status determined using the age- and sex-specific 85th percentile for body mass index (BMI) from CDC Growth Charts. MEASUREMENTS Physical activity during the preschool day was assessed on multiple days via two independent objective measures direct observation using the observation system for recording activity in preschools (OSRAP) and real-time accelerometry using the MTI/CSA 7164 accelerometer. Parents completed a take-home survey assessing sociodemographic information, parental height and weight, modeling of physical activity, support for physical activity, active toys and sporting equipment at home, child’s television watching, frequency of park visitation, and perceptions of child competence. RESULTS Overweight boys were significantly less active than their nonoverweight peers during the preschool day. No significant differences were observed in girls. Despite a strong association between childhood overweight status and parental obesity, no significant differences were observed for the hypothesized parental influences on physical activity behavior. CONCLUSIONS Our results suggest that a significant proportion of overweight children may be at increased risk for further gains in adiposity because of low levels of physical activity during the preschool day.
Resumo:
1,4-Diazabicyclo[2.2.2]octane (DABCO) forms well-defined co-crystals with 1,2-diiodotetrafluorobenzene (1,2-DITFB), [(1,2-DITFB)2DABCO], and 1,3,5-triiodotrifluorobenzene, [(1,3,5-TITFB)2DABCO]. Both systems exhibited lower-than-expected supramolecular connectivity, which inspired a search for polymorphs in alternative crystallization solvents. In dichloromethane solution, the Menshutkin reaction was found to occur, generating chloride anions and quaternary ammonium cations through the reaction between the solvent and DABCO. The controlled in situ production of chloride ions facilitated the crystallization of new halogen bonded networks, DABCO–CH2Cl[(1,2-DITFB)Cl] (zigzag X-bonded chains) and (DABCO–CH2Cl)3[(1,3,5-TITFB)2Cl3]·CHCl3 (2D pseudo-trigonal X-bonded nets displaying Borremean entanglement), propagating with charge-assisted C–I···Cl– halogen bonds. The method was found to be versatile, and substitution of DABCO with triethylamine (TEA) gave (TEA-CH2Cl)3[(1,2-DITFB)Cl3]·4(H2O) (mixed halogen bond hydrogen bond network with 2D supramolecular connectivity) and TEA-CH2Cl[(1,3,5-TITFB)Cl] (tightly packed planar trigonal nets). The co-crystals were typically produced in high yield and purity with relatively predictable supramolecular topology, particularly with respect to the connectivity of the iodobenzene molecules. The potential to use this synthetic methodology for crystal engineering of halogen bonded architectures is demonstrated and discussed.
Resumo:
The structures of the cocrystalline adducts of 3,5-dinitrobenzoic acid (3,5-DNBA) with 4-aminosalicylic acid (PASA), the 1:1 partial hydrate, C7H4N2O6 .C7H7NO3 . 2H2O, (I) and 2-hydroxy-3-(1H-indol-3-yl)propenoic acid (HIPA) and the 1:1:1 d6-dimethylsulfoxide solvate, C7H4N2O6 . C11H9NO3 . C2D6OS, (II) are reported. The crystal substructure of (I) comprises two centrosymmetric hydrogen-bonded R2/2(8) homodimers, one with 3,5-DNBA, the other with PASA, and an R2/2(8) 3,5-DNBA-PASA heterodimer. In the crystal, inter-unit amine N-H...O and water O-H...O hydrogen bonds generate a three-dimensional supramolecular structure. In (II), the asymmetric unit consists of the three constituent molecules which form an essentially planar cyclic hydrogen-bonded heterotrimer unit [graph set R2/3(17)] through carboxyl, hydroxy and amino groups. These units associate across a crystallographic inversion centre through the HIPA carboxylic acid group in an R2/2~(8) hydrogen-bonding association, giving a zero-dimensional structure lying parallel to (100). In both structures, pi--pi interactions are present [minimum ring centroid separations: 3.6471(18)A in (I) and 3.5819(10)A in (II)].
Resumo:
The structures of the 1:1 anhydrous salts of nicotine (NIC) with 3,5-dinitrosalicylic acid (DNSA) and 5-sulfosalicylic acid (5-SSA), namely (1R,2S)-1-methyl-2-(3-pyridyl)-1H-pyrrolidin-1-ium 2-carboxy-4,6-dinitrophenolate, C10H15N2+ C7H3N2O7-, (I) and (1R,2S)-1-methyl-2-(3-pyridyl)-1H-pyrrolidin-1-ium 3-carboxy-4-hydroxybenzenesulfonate, C10H15N2+ C7H5O6S-, (II) are reported. The asymmetric units of both (I) and (II) comprise two independent nicotinium cations (C and D) and either two DNSA or two 5-SSA anions (A and B), respectively. One of the DNSA anions shows a 25% rotational disorder in the benzene ring system. In the crystal of (I), inter-unit pyrrolidinium N-H...N(pyridine) hydrogen bonds generate zigzag NIC cation chains which extend along a while the DNSA anions are not involved in any formal inter-species hydrogen bonding but instead form pi--pi associated stacks which parallel the NIC chains along a [ring centroid separation, 3.857(2)A]. Weak C-H...O interactions between chain substructures give an overall three-dimensional structure. With (II), A and B anions form independent zigzag chains with C and D cations, respectively, through carboxylic acid O-H...N(pyridine) hydrogen bonds. These chains, which extend along b are pseudo-centrosymmetrically related and give pi--pi interactions between the benzene rings of anions A and B and the pyridine rings of the NIC cations C and D, respectively [ring centroid separations, 3.6422(19) and 3.7117(19)A]. Present also are weak intermolecular C-H...O hydrogen-bonding interactions between the chains, giving an overall three-dimensional structure.
Resumo:
There is an ongoing debate in relation to Part 3-5 of the ACL, particularly over its use in relation to other civil liability remedies. This article looks more closely at ss 138 and 139. It argues that, because of a possible design flaw in the statutory construction of s 138, it can be interpreted much more broadly than it has been to date. Also, the paper discusses the effect on an interpretation of s 139 ACL of both the High Court’s decision in Marks v GIO Australia Holdings Ltd, and a small but significant amendment to s 139 when the ACL was enacted. It argues that s 139 can now be interpreted broadly to include claims not just for loss of financial support or services but for all loss or damage or injury caused.
Resumo:
The anhydrous salts of 1H-indole-3-ethanamine (tryptamine) with isomeric (2,4-dichlorophenoxy)acetic acid (2,4-D) and (3,5-dichlorophenoxy)acetic (3,5-D), C10H13N2+ (C8H5Cl2O3)-, [(I) and (II), respectively] have been determined and their one-dimensional hydrogen-bonded polymeric structures are described. In the crystal of (I),the aminium H-atoms are involved in three separate inter-species N-H...O hydrogen-bonding interactions, two with carboxyl O-atom acceptors and the third in an asymmetric three-centre bidentate carboxyl O,O' chelate [graph set R2/1(4)]. The indole H-atom forms an N-H...O~carboxyl~ hydrogen bond, extending the chain structure along the b axial direction. In (II), two of the three aminium H-atoms are also involved in N-H...O(carboxyl) hydrogen bonds similar to (I) but with the third, a three-centre asymmetric interaction with carboxyl and phenoxy O-atoms is found [graph set R2/1(5)]. The chain polymeric extension is also along b. There are no pi--pi ring interactions in either of the structures. The aminium side chain conformations differ significantly between the two structures, reflecting the conformational ambivalence of the tryptaminium cation, as found also in the benzoate salts.
Resumo:
The behavior of small molecules on a surface depends critically on both molecule–substrate and intermolecular interactions. We present here a detailed comparative investigation of 1,3,5-benzene tricarboxylic acid (trimesic acid, TMA) on two different surfaces: highly oriented pyrolytic graphite (HOPG) and single-layer graphene (SLG) grown on a polycrystalline Cu foil. On the basis of high-resolution scanning tunnelling microscopy (STM) images, we show that the epitaxy matrix for the hexagonal TMA chicken wire phase is identical on these two surfaces, and, using density functional theory (DFT) with a non-local van der Waals correlation contribution, we identify the most energetically favorable adsorption geometries. Simulated STM images based on these calculations suggest that the TMA lattice can stably adsorb on sites other than those identified to maximize binding interactions with the substrate. This is consistent with our net energy calculations that suggest that intermolecular interactions (TMA–TMA dimer bonding) are dominant over TMA–substrate interactions in stabilizing the system. STM images demonstrate the robustness of the TMA films on SLG, where the molecular network extends across the variable topography of the SLG substrates and remains intact after rinsing and drying the films. These results help to elucidate molecular behavior on SLG and suggest significant similarities between adsorption on HOPG and SLG.
Resumo:
In the structure of the title complex [[Na(H2O)3]+ (C6H2Cl3N2O2)-^ . 3(H2O)]n, the Na salt of the herbicide picloram, the cation is a polymeric chain structure, based on doubly water-bridged NaO5 trigonal bipyramidal complex units which have in addition, a singly-bonded monodentate water molecule. Each of the bridges within the chain which lies along the a cell direction is centrosymmetric with Na...Na separations of 3.4807(16) and 3.5109(16)Ang. In the crystal, there are three water molecules of solvation and these, as well as the coordinated water molecules and the amino group of the 4-amino-3,5,6-trichloropicolinate anion are involved in extensive inter-species hydrogen-bonding interactions with carboxyl and water O-atoms as well as the pyridine N-atom. Among these association is a centrosymmetric cyclic tetra-water R4/4(8) ring , resulting in an overall three-dimensional structure.