976 resultados para CELLULAR-ENERGY


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Base excision repair (BER) proteins has been associated with functions beyond DNA repair. Apurynic/apyrimidinic endonuclease 1 (APE1) is a multifunctional protein involved in a plethora of cellular activities, such as redox activation of transcription factors, RNA processing and DNA repair. Some studies have described the action of the protein 8-oxoguanine (OGG1) in correcting oxidized lesions in promoters as a step in the transcription of pro-inflammatory cytokines. Despite being especially important in redox activation of transcription factors such as nuclear factor κB (NF-κB) and AP- 1, the repair activity of APE1 has not yet been associated with the inflammatory response. In this study, experimental and bioinformatic analysis approaches have been used to investigate the relationship between inhibition of the repair of abasic sites in DNA by MX, a synthetic molecule designed to inhibt the repair activity of APE1, and the modulation of the inflammatory response. The results showed that treatment of monocytes with lipopolysaccharide (LPS) and MX reduced the expression of cytokines, chemokines and toll-like receptors, and negatively regulated biological immune processes, as macrophages activation, and NF-κB and tumor necrosis factor (TNF-α) and interferon pathways, without inducing cell death. The transcriptomic analysis suggests that LPS/MX treatment induces mitochondrial dysfunction, endoplasmic reticulum stress and activation of autophagy pathways, probably activated by impairment of cellular energy and/or the accumulation of nuclear and mitochondria DNA damage. Additionally, it is proposed that the repair activity of APE1 is required for transcription of inflammatory genes by interaction with abasic sites at specific promoters and recruitment of transcriptional complexes during inflammatory signaling. This work presents a new perspective on the interactions between the BER activity and the modulation of inflammatory response, and suggests a new activity for APE1 protein as modulator of the immune response in a redox-independent manner.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rapid climatic changes are taking place in Arctic, subarctic and cold temperate regions, where predictions point to an increase in freeze-thaw events, changes in precipitation, evaporation and salinity patterns. Climate change may therefore result in large impacts in ecosystem functioning and dynamics, especially in the presence of contaminants due to intense anthropogenic activities. Even though multiple stress approaches have received increasing interest in the last decades, the number of such studies is limited. In particular, knowledge on the effect of freezethaw events and salinity fluctuations on ecotoxicology of soil invertebrates is lacking, especially important when considering supralittoral species. Therefore, the aim of this thesis was to investigate the effects of low temperature and salinity fluctuations, singly and in combination with contaminants, in the freeze-tolerant and euryhaline enchytraeid Enchytraeus albidus. The assessment of population level endpoints (survival and reproduction), along with physiological and biochemical parameters such as levels of cryoprotectants, ice/water content, oxidative stress biomarkers, cellular energy allocation, and tissue concentration of chemicals (when applied), provided new and valuable knowledge on the effects of selected physical and chemical stressors in E. albidus, and allowed the understanding of adjustments in the primary response mechanisms that enable worms to maintain homeostasis and survival in harsh environments such as polar and temperate-cold regions. The presence of moderate levels of salinity significantly increased freeze-tolerance (mainly evaluated as survival, cryoprotection and ice fraction) and reproduction of E. albidus. Moreover, it contributed to the readjustments of cryoprotectant levels, restoration of antioxidant levels and changed singnificantly the effect and uptake of chemicals (copper cadmium, carbendazim and 4-nonylphenol). Temperature fluctuations (simulated as daily freeze-thaw cycles, between -2ºC and -4ºC) caused substancial negative effect on survival of worms previsouly exposed to non-lethal concentrations of 4-nonylphenol, as compared with constant freezing (-4ºC) and control temperature (2ºC). The decrease in cryoprotectants, increase in energy consumption and the highest concentration of 4-nonylphenol in the tissues have highlighted the high energy requirements and level of toxicity experienced by worms exposed to the combined effect of contaminants and freezing-thawing events. The findings reported on this thesis demonstrate that natural (physical) and chemical stressors, singly or in combination, may alter the dynamics of E. albidus, affecting not only their survival and reproduction (and consequent presence/distribution) but also their physiological and biochemical adaptations. These alterations may lead to severe consequences for the functioning of the ecosystems along the Arctic, subarctic and cold temperate regions, where they play an important role for decomposition of dead organic matter. This thesis provides a scientific basis for improving the setting of safety factors for natural soil ecosystems, and to underline the integration of similar investigations in ecotoxicology, and eventually in risk assessment of contaminants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The function of the vascular endothelium is to maintain vascular homeostasis, by providing an anti-thrombotic, anti-inflammatory and vasodilatory interface between circulating blood and the vessel wall, meanwhile facilitating the selective passage of blood components such as signaling molecules and immune cells. Dysfunction of the vascular endothelium is implicated in a number of pathological states including atherosclerosis and hypertension, and is thought to precede atherogenesis by a number of years. Vascular endothelial growth factor A (VEGF) is a crucial mitogenic signaling molecule, not only essential for embryonic development, but also in the adult for regulating both physiological and pathological angiogenesis. Previous studies by our laboratory have demonstrated that VEGF-A activates AMP-activated protein kinase (AMPK), the downstream component of a signaling cascade important in the regulation of whole body and cellular energy status. Furthermore, studies in our laboratory have indicated that AMPK is essential for VEGF-A-stimulated vascular endothelial cell proliferation. AMPK activation typically stimulates anabolic processes and inhibits catabolic processes including cell proliferation, with the ultimate aim of redressing energy imbalance, and as such is an attractive therapeutic target for the treatment of obesity, metabolic syndromes, and type 2 diabetes. Metabolic diseases are associated with adverse cardiovascular outcomes and AMPK activation is reported to have beneficial effects on the vascular endothelium. The mechanism by which VEGF-A stimulates AMPK, and the functional consequences of VEGF-A-stimulated AMPK activation remain uncertain. The present study therefore aimed to identify the specific mechanism(s) by which VEGF-A regulates the activity of AMPK in endothelial cells, and how this might differ from the activation of AMPK by other agents. Furthermore, the role of AMPK in the pro-proliferative actions of VEGF-A was further examined. Human aortic and umbilical vein endothelial cells were therefore used as a model system to characterise the specific effect(s) of VEGF-A stimulation on AMPK activation. The present study reports that AMPK α1 containing AMPK complexes account for the vast majority of both basal and VEGF-A-stimulated AMPK activity. Furthermore, AMPK α1 is localized to the endoplasmic reticulum when sub-confluent, but translocated to the Golgi apparatus when cells are cultured to confluence. AMPK α2 appears to be associated with a structural cellular component, but neither α1 nor α2 complexes appear to translocate in response to VEGF-A stimulation. The present study confirms previous reports that when measured using the MTS cell proliferation assay, AMPK is required for VEGF-A-stimulated endothelial cell proliferation. However, parallel experiments measuring cell proliferation using the Real-Time Cell Analyzer xCELLigence system, do not agree with these previous reports, suggesting that AMPK may in fact be required for an aspect of mitochondrial metabolism which is enhanced by VEGF-A. Studies into the mitochondrial activity of endothelial cells have proved inconclusive at this time, but further studies into this are warranted. During previous studies in our laboratory, it was suggested that VEGF-A-stimulated AMPK activation may be mediated via the diacylglycerol (DAG)-sensitive transient receptor potential cation channel (TRPCs -3, -6 or -7) family of ion channels. The present study can neither confirm, nor exclude the expression of TRPCs in vascular endothelial cells, nor rule out their involvement in VEGF-A-stimulated AMPK activation; more specific investigative tools are required in order to characterise their involvement. Furthermore, nicotinic acid adenine dinucleotide phosphate (NAADP)-stimulated Ca2+ release from acidic intracellular organelles is not required for AMPK activation by VEGF-A. Despite what is known about the mechanisms by which AMPK is activated, far less is known concerning the downregulation of AMPK activity, as observed in human and animal models of metabolic disease. Phosphorylation of AMPK α1 Ser485 (α2 Ser491) has recently been characterised as a mechanism by which the activity of AMPK is negatively regulated. We report here for the first time that VEGF-A stimulates AMPK α1 Ser485 phosphorylation independently of the previously reported AMPK α1 Ser485 kinases Akt (protein kinase B) and ERK1/2 (extracellular signal-regulated kinase 1/2). Furthermore, inhibition of protein kinase C (PKC), the activity of which is reported to be elevated in metabolic disease, attenuates VEGF-A- and phorbol 12-myristate 13-acetate (PMA)-stimulated AMPK α1 Ser485 phosphorylation, and increases basal AMPK activity. In contrast to this, PKC activation reduces AMPK activity in human vascular endothelial cells. Attempts to identify the PKC isoform responsible for inhibiting AMPK activity suggest that it is one (or more) of the Ca2+-regulated DAG-sensitive isoforms of PKC, however cross regulation of PKC isoform expression has limited the present study. Furthermore, AMPK α1 Ser485 phosphorylation was inversely correlated with human muscle insulin sensitivity. As such, enhanced AMPK α1 Ser485 phosphorylation, potentially mediated by increased PKC activation may help explain some of the reduced AMPK activity observed in metabolic disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The evolution of event time and size statistics in two heterogeneous cellular automaton models of earthquake behavior are studied and compared to the evolution of these quantities during observed periods of accelerating seismic energy release Drier to large earthquakes. The two automata have different nearest neighbor laws, one of which produces self-organized critical (SOC) behavior (PSD model) and the other which produces quasi-periodic large events (crack model). In the PSD model periods of accelerating energy release before large events are rare. In the crack model, many large events are preceded by periods of accelerating energy release. When compared to randomized event catalogs, accelerating energy release before large events occurs more often than random in the crack model but less often than random in the PSD model; it is easier to tell the crack and PSD model results apart from each other than to tell either model apart from a random catalog. The evolution of event sizes during the accelerating energy release sequences in all models is compared to that of observed sequences. The accelerating energy release sequences in the crack model consist of an increase in the rate of events of all sizes, consistent with observations from a small number of natural cases, however inconsistent with a larger number of cases in which there is an increase in the rate of only moderate-sized events. On average, no increase in the rate of events of any size is seen before large events in the PSD model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The energy demands of the brain are high: they account for at least 20% of the body's energy consumption. Evolutionary studies indicate that the emergence of higher cognitive functions in humans is associated with an increased glucose utilization and expression of energy metabolism genes. Functional brain imaging techniques such as fMRI and PET, which are widely used in human neuroscience studies, detect signals that monitor energy delivery and use in register with neuronal activity. Recent technological advances in metabolic studies with cellular resolution have afforded decisive insights into the understanding of the cellular and molecular bases of the coupling between neuronal activity and energy metabolism and point at a key role of neuron-astrocyte metabolic interactions. This article reviews some of the most salient features emerging from recent studies and aims at providing an integration of brain energy metabolism across resolution scales.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of this paper is to combine the antenna downtilt selection with the cell size selection in order to reduce the overall radio frequency (RF) transmission power in the homogeneous High-Speed Packet Downlink (HSDPA) cellular radio access network (RAN). The analysis is based on the concept of small cells deployment. The energy consumption ratio (ECR) and the energy reduction gain (ERG) of the cellular RAN are calculated for different antenna tilts when the cell size is being reduced for a given user density and service area. The results have shown that a suitable antenna tilt and the RF power setting can achieve an overall energy reduction of up to 82.56%. Equally, our results demonstrate that a small cell deployment can considerably reduce the overall energy consumption of a cellular network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The control of energy homeostasis relies on robust neuronal circuits that regulate food intake and energy expenditure. Although the physiology of these circuits is well understood, the molecular and cellular response of this program to chronic diseases is still largely unclear. Hypothalamic inflammation has emerged as a major driver of energy homeostasis dysfunction in both obesity and anorexia. Importantly, this inflammation disrupts the action of metabolic signals promoting anabolism or supporting catabolism. In this review, we address the evidence that favors hypothalamic inflammation as a factor that resets energy homeostasis in pathological states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Protein-energy malnutrition (PEM) is an important public health problem affecting millions of people worldwide. Hematopoietic tissue requires a high nutrient supply, and a reduction in leukocytes, especially lymphocytes, suggests that some nutritional deficiencies might be altering bone marrow function and decreasing its ability to produce lymphocytes. In this study, we evaluated the effect that PEM has on lymphocyte subtypes and the cell cycle of CD5(+) cells. Methods: Swiss mice were subjected to PEM using a low-protein diet containing 4% protein. When the experimental group had lost about 20% of their original body weight, we collected blood and bone marrow cells and evaluated the hemogram, the myelogram, bone marrow lymphoid markers using flow cytometry, and the cell cycle in CD5(+) bone marrow. Results: Malnourished animals presented anemia, reticulocytopenia, and leukopenia with lymphopenia. The bone marrow was hypocellular, and flow cytometric analyses of bone marrow cells showed cells that were CD45(+) (91.2%), CD2(+) (84.9%), CD5(+) (37.3%), CD3(+) (23.5%), CD19(+) (43.3%), CD22(+) (34.7%), CD19(+)/CD2(+) (51.2%), CD19(+)/CD3(+)(24.0%), CD19(+)/CD5(+) (13.2%), CD22(+)/CD2(+) (40.1%), CD22(+)/CD3(+) (30.3%), and CD22(+)/CD5(+) (1.1%) in malnourished animals and CD45(+) (97.5%), CD2(+) (42.9%), CD5(+) (91.5%), CD3(+) (92.0%), CD19(+) (52.0%), CD22(+) (75.6%), CD19(+)/CD2(+) (62.0%), CD19(+)/CD3(+) (55.4%), CD19(+)/CO5(+) (6.7%), CD22(+)/CD2(+) (70.3%), CD22(+)/CD3(+) (55.9%), and CD22(+)/ CD5(+) (8.4%) in control animals. Malnourished animals also presented more CD5(+) cells in the G0 phase of cell cycle development. Conclusion: Malnourished animals presented bone marrow hypoplasia, maturation interruption, prominent lymphopenia with depletion in the lymphoid lineage, and changes in cellular development. We suggest that these changes are some of the primary causes of lymphopenia in cases of PEM and partly explain the increase in susceptibility to infections found in malnourished individuals. Published by Elsevier Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anticancer activity of the new [Ru(eta(5)-C5H5)(PPh3)(Me(2)bpy)][CF3SO3] (Me(2)bpy = 4,4'-dimethyl-2,2'-bipyridine) complex was evaluated in vitro against several human cancer cell lines, namely A2780, A2780CisR, HT29, MCF7, MDAMB231 and PC3. Remarkably, the IC50 values, placed in the nanomolar and sub-micromolar range, largely exceeded the activity of cisplatin. Binding to human serum albumin, either HSA (human serum albumin) or HSA(faf) (fatty acid-free human serum albumin) does not affect the complex activity. Fluorescence studies revealed that the present ruthenium complex strongly quench the intrinsic fluorescence of albumin. Cell death by the [Ru(eta(5)-C5H5)(PPh3)(Me(2)bpy)][CF3SO3] complex was reduced in the presence of endocytosis modulators and at low temperature, suggesting an energy-dependent mechanism consistent with endocytosis. On the whole, the biological activity evaluated herein suggests that the complex could be a promising anticancer agent. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de mestrado em Engenharia Mecânica

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reprogramming energy metabolism and inducing angiogenesis: co-expression of monocarboxylate transporters with VEGF family members in cervical adenocarcinomas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Report for the scientific sojourn carried out at the Department of Structure and Constituents of Matter during 2007.The main focus of the work was on phenomena related to nano-electromechanical processes that take place on a cellular level. Additionally, it has also been performed independent work related to charge and energy transfer in bio molecules, energy transfer in coupled spin systems as well as electrodynamics of nonlinear metamaterials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The modulation of energetic homeostasis by pollutants has recently emerged as a potential contributor to the onset of metabolic disorders. Diethylhexyl phthalate (DEHP) is a widely used industrial plasticizer to which humans are widely exposed. Phthalates can activate the three peroxisome proliferatoractivated receptor (PPAR) isotypes on cellular models and induce peroxisome proliferation in rodents.Objectives: In this study, we aimed to evaluate the systemic and metabolic consequences of DEHP exposure that have remained so far unexplored and to characterize the underlying molecular mechanisms of action.Methods: As a proof of concept and mechanism, genetically engineered mouse models of PPARs were exposed to high doses of DEHP, followed by metabolic and molecular analyses.Results: DEHP-treated mice were protected from diet-induced obesity via PPARalpha-dependent activation of hepatic fatty acid catabolism, whereas the activity of neither PPARbeta nor PPARgamma was affected. However, the lean phenotype observed in response to DEHP in wild-type mice was surprisingly abolished in PPARalpha-humanized mice. These species differences are associated with a different pattern of coregulator recruitment.Conclusion: These results demonstrate that DEHP exerts species-specific metabolic actions that rely to a large extent on PPARalpha signaling and highlight the metabolic importance of the species-specific activation of PPARalpha by xenobiotic compounds. Editor's SummaryDiethylhexyl phthalate (DEHP) is an industrial plasticizer used in cosmetics, medical devices, food packaging, and other applications. Evidence that DEHP metabolites can activate peroxisome proliferatoractivated receptors (PPARs) involved in fatty acid oxidation (PPARalpha and PPARbeta) and adiposite function and insulin resistance (PPARgamma) has raised concerns about potential effects of DEHP on metabolic homeostasis. In rodents, PPARalpha activation also induces hepatic peroxisome proliferation, but this response to PPARalpha activation is not observed in humans. Feige et al. (p. 234) evaluated systemic and metabolic consequences of high-dose oral DEHP in combination with a high-fat diet in wild-type mice and genetically engineered mouse PPAR models. The authors report that mice exposed to DEHP gained less weight than controls, without modifying their feeding behavior; they also exhibited lower triglyceride levels, smaller adipocytes, and improved glucose tolerance compared with controls. These effects, which were observed in mice fed both high-fat and standard diets, appeared to be mediated by PPARalpha-dependent activation of hepatic fatty acid catabolism without apparent involvement of PPARbeta or PPARgamma. However, mouse models that expressed human (versus mouse) PPARalpha tended to gain more weight on a high-fat diet than their DHEP-unexposed counterparts. The authors conclude that findings support species-specific metabolic effects of DEHP mediated by PPARalpha activation.