923 resultados para CDC2 Protein Kinase


Relevância:

100.00% 100.00%

Publicador:

Resumo:

CDK11(p58), a G2/M-specific protein kinase, has been shown to be associated with apoptosis in many cell lines, with largely unknown mechanisms. Our previous study proved that CDK11(p58)-enhanced cycloheximide (CHX)-induced apoptosis in SMMC-7721 hepatocarcinoma cells. Here we report for the first time that ectopic expression of CDK11(p58) down-regulates Bcl-2 expression and its Ser70, Ser87 phosphorylation in CHX-induced apoptosis in SMMC-7721 cells. Overexpression of Bcl-2 counteracts the pro-apoptotic activity of CDK11(p58). Furthermore, we confirm that the kinase activity of CDK11(p58) is essential to the down-regulation of Bcl-2 as well as apoptosis. Taken together, these results demonstrate that CDK11(p58) down-regulates Bcl-2 in pro-apoptosis pathway depending on its kinase activity, which elicits survival signal in hepatocarcinoma cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The PITSLRE protein kinases are parts of the large family of p34cdc2-related kinases. During apoptosis induced by some stimuli, specific PITSLRE isoforms are cleaved by caspase to produce a protein that contains the C-terminal kinase domain of the PITSLRE proteins (p110C). The p110C induces apoptosis when it is ectopically expressed in Chinese hamster ovary cells. In our study, similar induction of this p110C was observed during anoikis in NIH3T3 cells. To investigate the molecular mechanism of apoptosis mediated by p110C, we used the yeast two-hybrid system to screen a human fetal liver cDNA library and identified p21-activated kinase 1 (PAK1) as an interacting partner of p110C. The association of p110C with PAK1 was further confirmed by in vitro binding assay, in vivo coimmunoprecipitation, and confocal microscope analysis. The interaction of p110C with PAK1 occurred within the residues 210-332 of PAK1. Neither association between p58PITSLRE or p110PITSLRE and PAK1 nor association between p110C and PAK2 or PAK3 was observed. Anoikis was increased and PAK1 activity was inhibited when NIH3T3 cells were transfected with p110C. Furthermore, the binding of p110C with PAK1 and inhibition of PAK1 activity were also observed during anoikis. Taken together, these data suggested that PAK1 might participate in the apoptotic pathway mediated by p110C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular pathogenesis of diabetic nephropathy (DN), the leading cause of end-stage renal disease worldwide, is complex and not fully understood. Transforming growth factor-beta (TGF-beta1) plays a critical role in many fibrotic disorders, including DN. In this study, we report protein kinase B (PKB/Akt) activation as a downstream event contributing to the pathophysiology of DN. We investigated the potential of PKB/Akt to mediate the profibrotic bioactions of TGF-beta1 in kidney. Treatment of normal rat kidney epithelial cells (NRK52E) with TGF-beta1 resulted in activation of phosphatidylinositol 3-kinase (PI3K) and PKB/Akt as evidenced by increased Ser473 phosphorylation and GSK-3beta phosphorylation. TGF-beta1 also stimulated increased Smad3 phosphorylation in these cells, a response that was insensitive to inhibition of PI3K or PKB/Akt. NRK52E cells displayed a loss of zona occludins 1 and E-cadherin and a gain in vimentin and alpha-smooth muscle actin expression, consistent with the fibrotic actions of TGF-beta1. These effects were blocked with inhibitors of PI3K and PKB/Akt. Furthermore, overexpression of PTEN, the lipid phosphatase regulator of PKB/Akt activation, inhibited TGF-beta1-induced PKB/Akt activation. Interestingly, in the Goto-Kakizaki rat model of type 2 diabetes, we also detected increased phosphorylation of PKB/Akt and its downstream target, GSK-3beta, in the tubules, relative to that in control Wistar rats. Elevated Smad3 phosphorylation was also detected in kidney extracts from Goto-Kakizaki rats with chronic diabetes. Together, these data suggest that TGF-beta1-mediated PKB/Akt activation may be important in renal fibrosis during diabetic nephropathy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

3-Phosphoinositide-dependent protein kinase-1 (PDK1) appears to play a central regulatory role in many cell signalings between phosphoinositide-3 kinase and various intracellular serine/threonine kinases. In resting cells, PDK1 is known to be constitutively active and is further activated by tyrosine phosphorylation (Tyr(9) and Tyr(373/376)) following the treatment of the cell with insulin or pervanadate. However, little is known about the mechanisms for this additional activation of PDK1. Here, we report that the SH2 domain of Src, Crk, and GAP recognized tyrosine-phosphorylated PDK1 in vitro. Destabilization of PDK1 induced by geldanamycin (a Hsp90 inhibitor) was partially blocked in HEK 293 cells expressing PDK1- Y9F. Co-expression of Hsp90 enhanced PDK1-Src complex formation and led to further increased PDK1 activity toward PKB and SGK. Immunohistochemical analysis with anti- phospho-Tyr9 antibodies showed that the level of Tyr9 phosphorylation was markedly increased in tumor samples compared with normal. Taken together, these data suggest that phosphorylation of PDK1 on Tyr9, distinct from Tyr373/376, is important for PDK1/Src complex formation, leading to PDK1 activation. Furthermore, Tyr9 phosphorylation is critical for the stabilization of both PDK1 and the PDK1/Src complex via Hsp90-mediated protection of PDK1 degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maintenance of oxygen homeostasis is a key requirement to ensure normal mammalian cell growth and differentiation. Hypoxia arises when oxygen demand exceeds supply, and is a feature of multiple human diseases including stroke, cancer and renal fibrosis. We have investigated the effect of hypoxia on kidney cells, and observed that insulin-induced cell viability is increased in hypoxia. We have characterized the role of protein kinase B (PKB/ Akt) in these cells as a potential mediator of this effect. PKB/Akt activity was increased by low oxygen concentrations in kidney cells, and insulin-stimulated activation of PKB/Akt was stronger, more rapid and more sustained in hypoxia. Reduction of HIF1 alpha levels using antimycin-A or siRNA targeting HlF1 alpha did not affect PKB/Akt activation in hypoxia. Pharmacologic stabilization of HIF1 alpha independent of hypoxia did not increase insulin-stimulated PKB/Akt activation. Although increased insulin-stimulated cell viability was observed in hypoxia, no differences in the degree of insulin-stimulated glucose uptake were observed in L6 muscle cells in hypoxia compared to normoxia. Thus, PKB/Akt may regulate specific cellular responses to growth factors such as insulin under adverse conditions such as hypoxia. alpha 2007 Elsevier GmbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tumor suppressor p53 is commonly inhibited under conditions in which the phosphatidylinositide 3'-OH kinase/protein kinase B (PKB) Akt pathway is activated. Intracellular levels of p53 are controlled by the E3 ubiquitin ligase Mdm2. Here we show that PKB inhibits Mdm2 self-ubiquitination via phosphorylation of Mdm2 on Ser(166) and Ser(188). Stimulation of human embryonic kidney 293 cells with insulin-like growth factor-1 increased Mdm2 phosphorylation on Ser(166) and Ser(188) in a phosphatidylinositide 3'-OH kinase-dependent manner, and the treatment of both human embryonic kidney 293 and COS-1 cells with phosphatidylinositide 3'-OH kinase inhibitor LY-294002 led to proteasome-mediated Mdm2 degradation. Introduction of a constitutively active form of PKB together with Mdm2 into cells induced phosphorylation of Mdm2 at Ser(166) and Ser(188) and stabilized Mdm2 protein. Moreover, mouse embryonic fibroblasts lacking PKBalpha displayed reduced Mdm2 protein levels with a concomitant increase of p53 and p21(Cip1), resulting in strongly elevated apoptosis after UV irradiation. In addition, activation of PKB correlated with Mdm2 phosphorylation and stability in a variety of human tumor cells. These findings suggest that PKB plays a critical role in controlling of the Mdm2.p53 signaling pathway by regulating Mdm2 stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of the serine/threonine protein kinase B (PKB, also known as Akt) is becoming increasingly more evident to researchers investigating diverse cellular processes such as glucose uptake, cell-cycle progression, apoptosis and transcriptional regulation. New roles for PKB/Akt have been described in various organisms and biological processes. From the regulation of ovarian ecdysteroid production in the humble mosquito (Aedes aegypti), through the seasonal, tissue-specific regulation of PKB/Akt during the hibernation of yellow-bellied marmots (Marmota flaviventris), to the control of glucose metabolism and insulin signalling in the mouse (Mus musculus), our knowledge of the function of this protein kinase has expanded greatly in recent years. Significant advances in all aspects of PKB/Akt signalling have occurred in the past 2 years, including biological insights, novel substrates and newly discovered regulatory mechanisms of PKB/Akt. Collectively, these data expand the current models of PKB/Akt signalling and highlight potential directions for PKB/Akt research in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is ten years since the publication of three papers describing the cloning of a new proto-oncogene serine/threonine kinase termed protein kinase B (PKB)/Akt. Key roles for this protein kinase in cellular processes such as glucose metabolism, cell proliferation, apoptosis, transcription and cell migration are now well established. The explosion of publications involving PKB/Akt in the past three years emphasizes the high level of current interest in this signalling molecule. This review focuses on tracing the characterization of this kinase, through the elucidation of its mechanism of regulation, to its role in regulating physiological and pathophysiological processes,to our current understanding of the biology of PKB/Akt, and prospects for the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

3-Phosphoinositide-dependent protein kinase-1 (PDK1) plays a central role in signal transduction pathways that activate phosphoinositide 3-kinase. Despite its key role as an upstream activator of enzymes such as protein kinase B and p70 ribosomal protein S6 kinase, the regulatory mechanisms controlling PDK1 activity are poorly understood. PDK1 has been reported to be constitutively active in resting cells and not further activated by growth factor stimulation (Casamayor, A., Morrice, N. A., and Alessi, D. R. (1999) Biochem. J. 342, 287-292). Here, we report that PDK1 becomes tyrosine-phosphorylated and translocates to the plasma membrane in response to pervanadate and insulin. Following pervanadate treatment, PDK1 kinase activity increased 1.5- to 3-fold whereas the activity of PDK1 associated with the plasma membrane increased similar to6-fold. The activity of PDK1 localized to the plasma membrane was also increased by insulin treatment. Three tyrosine phosphorylation sites of PDK1 (Tyr-9 and Tyr-373/376) were identified using in vivo labeling and mass spectrometry. Using site-directed mutants, we show that, although phosphorylation on Tyr-373/376 is important for PDK1 activity, phosphorylation on Tyr-9 has no effect on the activity of the kinase. Both of these residues can be phosphorylated by v-Src tyrosine kinase in vitro, and co-expression of v-Src leads to tyrosine phosphorylation and activation of PDK1. Thus, these data suggest that PDK1 activity is regulated by reversible phosphorylation, possibly by a member of the Src kinase family.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Full activation of protein kinase B (PKB, also called Akt) requires phosphorylation on two regulatory sites, Thr-308 in the activation loop and Ser-473 in the hydrophobic C-terminal regulatory domain (numbering for PKB alpha /Akt-1), Although 3 ' -phosphoinositide-dependent protein kinase 1 (PDK1) has now been identified as the Thr-308 kinase, the mechanism of the Ser-473 phosphorylation remains controversial. As a step to further characterize the Ser-473 kinase, we examined the effects of a range of protein kinase inhibitors on the activation and phosphorylation of PKB. We found that staurosporine, a broad-specificity kinase inhibitor and inducer of cell apoptosis, attenuated PKB activation exclusively through the inhibition of Thr-308 phosphorylation, with Ser-473 phosphorylation unaffected. The increase in Thr-308 phosphorylation because of overexpression of PDK1 was also inhibited by staurosporine, We further show that staurosporine (CGP 39360) potently inhibited PDK1 activity in vitro with an IC50 of similar to0.22 muM. These data indicate that agonist-induced phosphorylation of Ser-473 of PKB is independent of PDK1 or PKB activity and occurs through a distinct Ser-473 kinase that is not inhibited by staurosporine, Moreover, our results suggest that inhibition of PKB signaling is involved in the proapoptotic action of staurosporine.