975 resultados para CANONICAL CORRESPONDENCE-ANALYSIS
Resumo:
Soil from the Amazonian region is usually regarded as unsuitable for agriculture because of its low organic matter content and low pH; however, this region also contains extremely rich soil, the Terra Preta Anthrosol. A diverse archaeal community usually inhabits acidic soils, such as those found in the Amazon. Therefore, we hypothesized that this community should be sensitive to changes in the environment. Here, the archaeal community composition of Terra Preta and adjacent soil was examined in four different sites in the Brazilian Amazon under different anthropic activities. The canonical correspondence analysis of terminal restriction fragment length polymorphisms has shown that the archaeal community structure was mostly influenced by soil attributes that differentiate the Terra Preta from the adjacent soil (i.e., pH, sulfur, and organic matter). Archaeal 16S rRNA gene clone libraries indicated that the two most abundant genera in both soils were Candidatus nitrosphaera and Canditatus nitrosocaldus. An ammonia monoxygenase gene (amoA) clone library analysis indicated that, within each site, there was no significant difference between the clone libraries of Terra Preta and adjacent soils. However, these clone libraries indicated there were significant differences between sites. Quantitative PCR has shown that Terra Preta soils subjected to agriculture displayed a higher number of amoA gene copy numbers than in adjacent soils. On the other hand, soils that were not subjected to agriculture did not display significant differences on amoA gene copy numbers between Terra Preta and adjacent soils. Taken together, our findings indicate that the overall archaeal community structure in these Amazonian soils is determined by the soil type and the current land use.
Resumo:
Natural regeneration and structure and their relationship to environmental variables were studied in three sections of a gallery forest, in Eastern Mato Grosso, Brazil (14º43′S and 52º21′W). The assumption was that natural regeneration is constrained by environmental determinants at all stages of development of the tree community. The objective was to analyse the forest structure and to verify the relationship between species distribution and abundance at different stages of regeneration and environmental variables. In each section, 47 contiguous (10x10m) permanent plots were established to sample trees (gbh≥15cm), following a systematic design. Seedlings (0.01 to 1m height), saplings (1.01 to 2m) and poles (from 2.01m height to gbh<15cm) were sampled in sub-plots of 1x1m, 2x2m and 5x5m, respectively. In each plot, soil properties, gaps projection, bamboos, rocky cover, declivity and depth of ground watertable were determined. The relationships between the environmental variables with trees and seedling communities were assessed by canonical correspondence analysis. In spite of the sections being near to each other, they presented large differences in floristics, structure and site conditions. The forest soil presented a low cation exchange capacity and a high level of Al saturation. The occurrence of bamboos and gaps and the depth of ground watertable limited the occurrence of poles and trees. The high degree of structural heterogeneity for each regeneration category was related primarily to a humidity gradient; but soil fertility (Ca+Mg) was also a determinant of seedling and sapling communities.
Resumo:
Although the knowledge on heavy metal hyperaccumulation mechanisms is increasing, the genetic basis of cadmium (Cd) hyperaccurnulation remains to be elucidated. Thlaspi caerulescens is an attractive model since Cd accumulation polymorphism observed in this species suggests genetic differences between populations with low versus high Cd hyperaccumulation capacities. In our study, a methodology is proposed to analyse at a regional scale the genetic differentiation of T. caerulescens natural populations in relation to Cd hyperaccumulation capacity while controlling for different environmental, soil, plant parameters and geographic origins of populations. Twenty-two populations were characterised with AFLP markers and cpDNA polymorphism. Over all loci, a partial Mantel test showed no significant genetic structure with regard to the Cd hyperaccumulation capacity. Nevertheless, when comparing the marker variation to a neutral model, seven AFLP fragments (9% of markers) were identified as presenting particularly high genetic differentiation between populations with low and high Cd hyperaccurnulation capacity. Using simulations, the number of outlier loci was showed to be significantly higher than expected at random. These loci presented a genetic structure linked to Cd hyperaccumulation capacity independently of the geography, environment, soil parameters and Zn, Pb, Fe and Cu concentrations in plants. Using a canonical correspondence analysis, we identified three of them as particularly related to the Cd hyperaccumutation capacity. This study demonstrates that populations with low and high hyperaccurnulation capacities can be significantly distinguished based on molecular data. Further investigations with candidate genes and mapped markers may allow identification and characterization of genomic regions linked to factors involved in Cd hyperaccumulation.
Resumo:
1. Landscape modification is often considered the principal cause of population decline in many bat species. Thus, schemes for bat conservation rely heavily on knowledge about species-landscape relationships. So far, however, few studies have quantified the possible influence of landscape structure on large-scale spatial patterns in bat communities. 2. This study presents quantitative models that use landscape structure to predict (i) spatial patterns in overall community composition and (ii) individual species' distributions through canonical correspondence analysis and generalized linear models, respectively. A geographical information system (GIS) was then used to draw up maps of (i) overall community patterns and (ii) distribution of potential species' habitats. These models relied on field data from the Swiss Jura mountains. 3. Fight descriptors of landscape structure accounted for 30% of the variation in bat community composition. For some species, more than 60% of the variance in distribution could be explained by landscape structure. Elevation, forest or woodland cover, lakes and suburbs, were the most frequent predictors. 4. This study shows that community composition in bats is related to landscape structure through species-specific relationships to resources. Due to their nocturnal activities and the difficulties of remote identification, a comprehensive bat census is rarely possible, and we suggest that predictive modelling of the type described here provides an indispensable conservation tool.
Resumo:
The variation of abundances of intermediate snail hosts of Fasciola hepatica in Cuba (Fossaria cubensis and Pseudosuccinea columella) was studied during one year under natural conditions at five sampling sites in San Juan y Martinez municipality, Pinar del Rio province, Cuba. The effect of some environmental variables on the lymnaeid abundances was also studied. A canonical correspondence analysis showed that both species do not generally occur together in the same habitat and that most factors affect them in an opposite fashion, although both of them correlate positively through time to the diversity of the habitats. F. cubensis prefers the sites that are in or closer to the city whereas P. columella is more abundant in rural sites. Lymnaeid abundances are mainly affected by nitrite and nitrate concentrations as well as by the abundance of the thiarid Tarebia granifera. F. cubensis is more abundant in polluted habitats with low densities (or absence) of T. granifera whereas P. columella prefers cleaner habitats and can coexist with the thiarid, even at its higher densities. The implications of divergent preferences of the two lymnaeids for the control of fasciolosis are discussed.
Resumo:
We describe the abiotic factors affecting the distribution of black flies at a microhabitat scale, rather than at the regional scale usually present in the literature on the Neotropics. Black fly larvae were sampled from the Tocantins River and three tributaries, located in the Brazilian savanna (state of Tocantins, Brazil) during six bi-monthly sampling periods from October 2004-August 2005. At each sampling site, 15 random quadrats (30 x 30 cm) were sampled each period and for each quadrat were determined mean water velocity, predominant substrate type (rocks, riffle litter or riparian vegetation) and depth detrended correspondence analysis (DCA) was used to determine associations with current velocity, whereas correspondence analysis (CA) was used to estimate site specific current velocity associations. Canonical correspondence analysis (CCA) was used to identify general microhabitat associations. The CCA showed that most species had a trend towards riffle litter, except for Simulium nigrimanum associated with rocky substrate and Simulium cuasiexiguum associated with riparian vegetation. The DCA showed a well defined pattern of water velocity associations. The CA revealed that the species showed different speed associations from one site to another, suggesting different competitive pressures resulting in the occurrence of different realized niches.
Resumo:
Canonical correspondence analysis and redundancy analysis are two methods of constrained ordination regularly used in the analysis of ecological data when several response variables (for example, species abundances) are related linearly to several explanatory variables (for example, environmental variables, spatial positions of samples). In this report I demonstrate the advantages of the fuzzy coding of explanatory variables: first, nonlinear relationships can be diagnosed; second, more variance in the responses can be explained; and third, in the presence of categorical explanatory variables (for example, years, regions) the interpretation of the resulting triplot ordination is unified because all explanatory variables are measured at a categorical level.
Resumo:
Lychnophora pohlii Sch. Bip. (Asteraceae), known as "Arnica mineira", is widely used in folk medicine and very abundant in the altitude vegetation of rocky grassland. The aim of this work was to study the density of this species and its relationship with soil parameters in rocky grassland in Diamantina, in the Upper Jequitinhonha region, Minas Gerais. Ten contiguous 20 x 50 m plots were marked (total sampled area 10,000 m²) on the campus Juscelino Kubitschek of the Federal University of Jequitinhonha and Mucuri Valleys (UFVJM). The plants in these plots were evaluated for frequency, dominance and density. The relationship between the density of this species with nine soil physical and chemical properties was analyzed by means of canonical correspondence analysis (CCA). The highest plant abundance (I) of the species Lychnophora pohlii Sch. Bip. was found in the vegetation sampling areas: plot 6 with 255 plants, plot 7 with 173, plot 8 with 189, plot 9 with 159, and plot 1 with 151 plants. In these areas, the floristic soil characteristics were similar, resulting in spatial proximity in the ACC diagrams. The density of Lychnophora pohlii was higher in plots with higher pH, P-rem and base saturation, the variables most strongly correlated with the first axis of canonical correspondence analysis.
Resumo:
The Brazilian savanna is a mosaic of phytophysiognomies influenced by edaphic and topographic factors that range from the occurrence of fires to anthropic disturbance. The goal of this study was a comparative analysis between two cerrado areas in southeastern Goiás, relating the floristic composition and structure of the vegetation to soil properties to better understand the physiognomic characteristics of the region. Twenty-five 20 × 20 m plots were used. All plants with circumference at breast height of more than 15 cm were measured. Soil samples collected at a depth of 0-20 cm were subjected to physical and chemical analyses. Canonical correspondence analysis (CCA) was used to detect possible correlations between the soil properties and species abundance and distribution. The density and total basal area were 1,647 ind/ha and 15.57 m2/ha, respectively, in Ouroana. At this site, 107 species were sampled. In Montes Claros de Goiás, the density and total basal area were 781 ind/ha and 17.62 m2/ha, and 120 species were sampled. The soil texture of Ouroana was sandy and significantly different from the medium to clayey texture of Montes Claros. The soils of both areas are dystrophic, however, more fertile in Montes Claros and aluminum-toxic in Ouroana. The species of vegetation were distributed according to soil fertility levels. The CCAs grouped species according to soil properties that defined location and abundance as well as the phytophysiognomies of the studied areas.
Resumo:
The objective of this work was to elevate gradient effect on diversity of Collembola, in a temperate forest on the northeast slope of Iztaccíhuatl Volcano, Mexico. Four expeditions were organized from November 2003 to August 2004, at four altitudes (2,753, 3,015, 3,250 and 3,687 m a.s.l.). In each site, air temperature, CO2 concentration, humidity, and terrain inclination were measured. The influence of abiotic factors on faunal composition was evaluated, at the four collecting sites, with canonical correspondence analyses (CCA). A total of 24,028 specimens were obtained, representing 12 families, 44 genera and 76 species. Mesaphorura phlorae, Proisotoma ca. tenella and Parisotoma ca. notabilis were the most abundant species. The highest diversity and evenness were recorded at 3,250 m (H' = 2.85; J' = 0.73). Canonical analyses axes 1 and 2 of the CCA explained 67.4% of the variance in species composition, with CO2 and altitude best explaining axis 1, while slope and humidity were better correlated to axis 2. The results showed that CO2 is an important factor to explain Collembola species assemblage, together with slope and humidity.
Resumo:
The objectives of this work were to evaluate the richness and diversity of the Poduromorpha fauna in two biotopes in Restinga de Maricá, RJ, Brazil, to identify the characteristic species of each biotope and to determine the relationships between the community structure and the abiotic environmental parameters. Representatives of the Poduromorpha (Collembola) order were studied under an ecological viewpoint in halophyte-psammophyte vegetation and foredune zone in preserved areas of Restinga de Maricá, a sand dune environment in the state of Rio de Janeiro, Brazil. The foredune zone showed the highest diversity, richness and equitability of springtail species. Differences in the fundamental, accessory and accidental species in each environment were encountered. Paraxenylla piloua was found to be an indicator species of the halophyte-psammophyte vegetation, while Friesea reducta, Pseudachorutes difficilis and Xenylla maritima were indicators of the foredune zone. The canonical correspondence analysis indicated pH, organic matter content and soil humidity as the most important factors influencing the spatiotemporal distribution of the species.
Resumo:
Ferruginous "campos rupestres" are a particular type of vegetation growing on iron-rich primary soils. We investigated the influence of soil properties on plant species abundance at two sites of ferruginous "campos rupestres" and one site of quartzitic "campo rupestre", all of them in "Quadrilátero Ferrífero", in Minas Gerais State, southeastern Brazil. In each site, 30 quadrats were sampled to assess plant species composition and abundance, and soil samples were taken to perform chemical and physical analyses. The analyzed soils are strongly acidic and presented low fertility and high levels of metallic cations; a principal component analysis of soil data showed a clear segregation among sites due mainly to fertility and heavy metals content, especially Cu, Zn, and Pb. The canonical correspondence analysis indicated a strong correlation between plant species abundance and soil properties, also segregating the sites.
Resumo:
The composition and variability of heterotrophic bacteria along the shelf sediments of south west coast of India and its relationship with the sediment biogeochemistry was investigated. The bacterial abundance ranged from 1.12 x 103 – 1.88 x 106 CFU g-1 dry wt. of sediment. The population showed significant positive correlation with silt (r = 0.529, p< 0.05), organic carbon (OC) (r = 0.679, p< 0.05), total nitrogen (TN) (r = 0.638, p< 0.05), total protein (TPRT) (r = 0.615, p< 0.05) and total carbohydrate (TCHO) (r = 0.675, p< 0.05) and significant negative correlation with sand (r = -0.488, p< 0.05). Community was mainly composed of Bacillus, Alteromonas, Vibrio, Coryneforms, Micrococcus, Planococcus, Staphylococcus, Moraxella, Alcaligenes, Enterobacteriaceae, Pseudomonas, Acinetobacter, Flavobacterium and Aeromonas. BIOENV analysis explained the best possible environmental parameters i.e., carbohydrate, total nitrogen, temperature, pH and sand at 50m depth and organic matter, BPC, protein, lipid and temperature at 200m depth controlling the distribution pattern of heterotrophic bacterial population in shelf sediments. The Principal Component Analysis (PCA) of the environmental variables showed that the first and second principal component accounted for 65% and 30.6% of the data variance respectively. Canonical Correspondence Analysis (CCA) revealed a strong correspondence between bacterial distribution and environmental variables in the study area. Moreover, non-metric MDS (Multidimensional Scaling) analysis demarcated the northern and southern latitudes of the study area based on the bioavailable organic matter
Resumo:
Aim The aim of this study was to explore the environmental factors that determine the spatial distribution of oro-mediterranean and alti-mediterranean plant communities in Crete. Location The paper provides a quantitative analysis of vegetation-environment relationships for two study areas within the Lefka Ori massif Crete, a proposed Natura 2000 site. Methods Eleven environmental variables were recorded: altitude, slope, aspect, percentage of bare rock, percentage of unvegetated ground, soil depth, pH, organic matter content and percentages of sand, silt and clay content. Classification of the vegetation was based on twinspan, while detrended correspondence analysis (DCA) and canonical correspondence analysis (CCA) were used to identify environmental gradients linked to community distribution. Results One hundred and twenty-five species were recorded from 120 plots located within the two study areas. Forty-seven of the recorded species are endemic, belonging to 35 families. Hemicryptophytes and chamaephytes were the most frequent, suggesting a typical oro-mediterranean life form spectrum. The samples were classified into five main community types and one transitional. The main gradients, identified by CCA, were altitude and surface cover type in the North-west site, while in the Central site the gradients were soil formation-development and surface cover type. Main conclusions The use of classification in combination with ordination techniques resulted in a good discrimination between plant communities and a greater understanding of controlling environmental factors. The methodology adopted can be employed for improving baseline information on plant community ecology and distribution in Mediterranean mountain zones.
Resumo:
The aims of this study were to explore the environmental factors that determine the distribution of plant communities in temporary rock pools and provide a quantitative analysis of vegetation-environment relationships for five study sites on the island of Gavdos, southwest of Crete, Greece. Data from 99 rock pools were collected and analysed using Two-Way Indicator Species Analysis (TWINSPAN), Detrended Correspondence Analysis (DCA) and Canonical Correspondence Analysis (CCA) to identify the principal communities and environmental gradients that are linked to community distribution. A total of 46 species belonging to 21 families were recorded within the study area. The dominant families were Labiatae, Gramineae and Compositae while therophytes and chamaephytes were the most frequent life forms. The samples were classified into six community types using TWINSPAN, which were also corroborated by CCA analysis. The principal gradients for vegetation distribution, identified by CCA, were associated with water storage and water retention ability, as expressed by pool perimeter and water depth. Generalised Additive Models (GAMs) were employed to identify responses of four dominant rock pool species to water depth. The resulting species response curves showed niche differentiation in the cases of Callitriche pulchra and Tillaea vaillantii and revealed competition between Zannichellia pedunculata and Chara vulgaris. The use of classification in combination with ordination techniques resulted in a good discrimination between plant communities. Generalised Additive Models are a powerful tool in investigating species response curves to environmental gradients. The methodology adopted can be employed for improving baseline information on plant community ecology and distribution in Mediterranean ephemeral pools.