920 resultados para CANALES MIMO
Resumo:
Large MIMO systems with tens of antennas in each communication terminal using full-rate non-orthogonal space-time block codes (STBC) from Cyclic Division Algebras (CDA) can achieve the benefits of both transmit diversity as well as high spectral efficiencies. Maximum-likelihood (ML) or near-ML decoding of these large-sized STBCs at low complexities, however, has been a challenge. In this paper, we establish that near-ML decoding of these large STBCs is possible at practically affordable low complexities. We show that the likelihood ascent search (LAS) detector, reported earlier by us for V-BLAST, is able to achieve near-ML uncoded BER performance in decoding a 32x32 STBC from CDA, which employs 32 transmit antennas and sends 32(2) = 1024 complex data symbols in 32 time slots in one STBC matrix (i.e., 32 data symbols sent per channel use). In terms of coded BER, with a 16x16 STBC, rate-3/4 turbo code and 4-QAM (i.e., 24 bps/Hz), the LAS detector performs close to within just about 4 dB from the theoretical MIMO capacity. Our results further show that, with LAS detection, information lossless (ILL) STBCs perform almost as good as full-diversity ILL (FD-ILL) STBCs. Such low-complexity detectors can potentially enable implementation of high spectral efficiency large MIMO systems that could be considered in wireless standards.
Resumo:
In this paper, we are concerned with low-complexity detection in large multiple-input multiple-output (MIMO) systems with tens of transmit/receive antennas. Our new contributions in this paper are two-fold. First, we propose a low-complexity algorithm for large-MIMO detection based on a layered low-complexity local neighborhood search. Second, we obtain a lower bound on the maximum-likelihood (ML) bit error performance using the local neighborhood search. The advantages of the proposed ML lower bound are i) it is easily obtained for MIMO systems with large number of antennas because of the inherent low complexity of the search algorithm, ii) it is tight at moderate-to-high SNRs, and iii) it can be tightened at low SNRs by increasing the number of symbols in the neighborhood definition. Interestingly, the proposed detection algorithm based on the layered local search achieves bit error performances which are quite close to this lower bound for large number of antennas and higher-order QAM. For e. g., in a 32 x 32 V-BLAST MIMO system, the proposed detection algorithm performs close to within 1.7 dB of the proposed ML lower bound at 10(-3) BER for 16-QAM (128 bps/Hz), and close to within 4.5 dB of the bound for 64-QAM (192 bps/Hz).
Resumo:
In a mobile ad-hoc network scenario, where communication nodes are mounted on moving platforms (like jeeps, trucks, tanks, etc.), use of V-BLAST requires that the number of receive antennas in a given node must be greater than or equal to the sum of the number of transmit antennas of all its neighbor nodes. This limits the achievable spatial multiplexing gain (data rate) for a given node. In such a scenario, we propose to achieve high data rates per node through multicode direct sequence spread spectrum techniques in conjunction with V-BLAST. In the considered multicode V-BLAST system, the receiver experiences code domain interference (CDI) in frequency selective fading, in addition to space domain interference (SDI) experienced in conventional V-BLAST systems. We propose two interference cancelling receivers that employ a linear parallel interference cancellation approach to handle the CDI, followed by conventional V-BLAST detector to handle the SDI, and then evaluate their bit error rates.
Resumo:
We consider a slow fading multiple-input multiple-output (MIMO) system with channel state information at both the transmitter and receiver. A well-known precoding scheme is based upon the singular value decomposition (SVD) of the channel matrix, which transforms the MIMO channel into parallel subchannels. Despite having low maximum likelihood decoding (MLD) complexity, this SVD precoding scheme provides a diversity gain which is limited by the diversity gain of the weakest subchannel. We therefore propose X- and Y-Codes, which improve the diversity gain of the SVD precoding scheme but maintain the low MLD complexity, by jointly coding information across a pair of subchannels. In particular, subchannels with high diversity gain are paired with those having low diversity gain. A pair of subchannels is jointly encoded using a 2 2 real matrix, which is fixed a priori and does not change with each channel realization. For X-Codes, these rotation matrices are parameterized by a single angle, while for Y-Codes, these matrices are left triangular matrices. Moreover, we propose X-, Y-Precoders with the same structure as X-, Y-Codes, but with encoding matrices adapted to each channel realization. We observed that X-Codes/Precoders are good for well-conditioned channels, while Y-Codes/Precoders are good for ill-conditioned channels.
Resumo:
The problem of estimating multiple Carrier Frequency Offsets (CFOs) in the uplink of MIMO-OFDM systems with Co-Channel (CC) and OFDMA based carrier allocation is considered. The tri-linear data model for generalized, multiuser OFDM system is formulated. Novel blind subspace based estimation of multiple CFOs in the case of arbitrary carrier allocation scheme in OFDMA systems and CC users in OFDM systems based on the Khatri-Rao product is proposed. The method works where the conventional subspace method fails. The performance of the proposed methods is compared with pilot based Least-Squares method.
Resumo:
Zero padded systems with linear receivers are shown to be robust and amenable to fast implementations in single antenna scenarios. In this paper, properties of such systems are investigated when multiple antennas are present at both ends of the communication link. In particular, their diversity and complexity are evaluated for precoded transmissions. The linear receivers are shown to exploit multipath and receive diversities, even in the absence of any coding at the transmitter. Use of additional redundancy to improve performance is considered and the effect of transmission rate on diversity order is analyzed. Low complexity implementations of Zero Forcing receivers are devised to further enhance their applicability.
Resumo:
In this paper, we shed light on the cross-layer interactions between the PHY, link and routing layers in networks with MIMO links operating in the diversity mode. Many previous studies assume an overly simplistic PHY layer model that does not sufficiently capture these interactions. We show that the use of simplistic models can in fact lead to misleading conclusions with regards to the higher layer performance with MIMO diversity. Towards understanding the impact of various PHY layer features on MIMO diversity, we begin with a simple but widely-used model and progressively incorporate these features to create new models. We examine the goodness of these models by comparing the simulated performance results with each, with measurements on an indoor 802.11 n testbed. Our work reveals several interesting cross-layer dependencies that affect the gains due to MIMO diversity. In particular, we observe that relative to SISO links: (a) PHY layer gains due to MIMO diversity do not always carry over to the higher layers, (b) the use of other PHY layer features such as FEC codes significantly influence the gains due to MIMO diversity, and (c) the choice of the routing metric can impact the gains possible with MIMO.
Resumo:
We consider a time division duplex multiple-input multiple-output (nt × nr MIMO). Using channel state information (CSI) at the transmitter, singular value decomposition (SVD) of the channel matrix is performed. This transforms the MIMO channel into parallel subchannels, but has a low overall diversity order. Hence, we propose X-Codes which achieve a higher diversity order by pairing the subchannels, prior to SVD preceding. In particular, each pair of information symbols is encoded by a fixed 2 × 2 real rotation matrix. X-Codes can be decoded using nr very low complexity two-dimensional real sphere decoders. Error probability analysis for X-Codes enables us to choose the optimal pairing and the optimal rotation angle for each pair. Finally, we show that our new scheme outperforms other low complexity precoding schemes.
Resumo:
In this paper, we present a belief propagation (BP) based equalizer for ultrawideband (UWB) multiple-input multiple-output (MIMO) inter-symbol interference (ISI) channels characterized by severe delay spreads. We employ a Markov random field (MRF) graphical model of the system on which we carry out message passing. The proposed BP equalizer is shown to perform increasingly closer to optimal performance for increasing number of multipath components (MPC) at a much lesser complexity than that of the optimum equalizer. The proposed equalizer performs close to within 0.25 dB of SISO AWGN performance at 10-3 bit error rate on a severely delay-spread MIMO-ISI channel with 20 equal-energy MPCs. We point out that, although MIMO/UWB systems are characterized by fully/densely connected graphical models, the following two proposed features are instrumental in achieving near-optimal performance for large number of MPCs at low complexities: i) use of pairwise compatibility functions in densely connected MRFs, and ii) use of damping of messages.
Resumo:
In this paper, we consider a robust design of MIMO-relay precoder and receive filter for the destination nodes in a non-regenerative multiple-input multiple-output (MIMO) relay network. The network consists of multiple source-destination node pairs assisted by a single MIMO-relay node. The source and destination nodes are single antenna nodes, whereas the MIMO-relay node has multiple transmit and multiple receive antennas. The channel state information (CSI) available at the MIMO-relay node for precoding purpose is assumed to be imperfect. We assume that the norms of errors in CSI are upper-bounded, and the MIMO-relay node knows these bounds. We consider the robust design of the MIMO-relay precoder and receive filter based on the minimization of the total MIMO-relay transmit power with constraints on the mean square error (MSE) at the destination nodes. We show that this design problem can be solved by solving an alternating sequence of minimization and worst-case analysis problems. The minimization problem is formulated as a convex optimization problem that can be solved efficiently using interior-point methods. The worst-case analysis problem can be solved analytically using an approximation for the MSEs at the destination nodes. We demonstrate the robust performance of the proposed design through simulations.
Resumo:
In this paper, we consider the application of belief propagation (BP) to achieve near-optimal signal detection in large multiple-input multiple-output (MIMO) systems at low complexities. Large-MIMO architectures based on spatial multiplexing (V-BLAST) as well as non-orthogonal space-time block codes(STBC) from cyclic division algebra (CDA) are considered. We adopt graphical models based on Markov random fields (MRF) and factor graphs (FG). In the MRF based approach, we use pairwise compatibility functions although the graphical models of MIMO systems are fully/densely connected. In the FG approach, we employ a Gaussian approximation (GA) of the multi-antenna interference, which significantly reduces the complexity while achieving very good performance for large dimensions. We show that i) both MRF and FG based BP approaches exhibit large-system behavior, where increasingly closer to optimal performance is achieved with increasing number of dimensions, and ii) damping of messages/beliefs significantly improves the bit error performance.
Resumo:
We consider Gaussian multiple-input multiple-output (MIMO) channels with discrete input alphabets. We propose a non-diagonal precoder based on the X-Codes in 1] to increase the mutual information. The MIMO channel is transformed into a set of parallel subchannels using singular value decomposition (SVD) and X-Codes are then used to pair the subchannels. X-Codes are fully characterized by the pairings and a 2 x 2 real rotation matrix for each pair (parameterized with a single angle). This precoding structure enables us to express the total mutual information as a sum of the mutual information of all the pairs. The problem of finding the optimal precoder with the above structure, which maximizes the total mutual information, is solved by: i) optimizing the rotation angle and the power allocation within each pair and ii) finding the optimal pairing and power allocation among the pairs. It is shown that the mutual information achieved with the proposed pairing scheme is very close to that achieved with the optimal precoder by Cruz et al., and is significantly better than Mercury/waterfilling strategy by Lozano et al. Our approach greatly simplifies both the precoder optimization and the detection complexity, making it suitable for practical applications.
Resumo:
[1] D. Tse and P. Viswanath, Fundamentals of Wireless Communication.Cambridge University Press, 2006. [2] H. Bolcskei, D. Gesbert, C. B. Papadias, and A.-J. van der Veen, Spacetime Wireless Systems: From Array Processing to MIMO Communications.Cambridge University Press, 2006. [3] Q. H. Spencer, C. B. Peel, A. L. Swindlehurst, and M. Haardt, “An introduction to the multiuser MIMO downlink,” IEEE Commun. Mag.,vol. 42, pp. 60–67, Oct. 2004. [4] K. Kusume, M. Joham,W. Utschick, and G. Bauch, “Efficient tomlinsonharashima precoding for spatial multiplexing on flat MIMO channel,”in Proc. IEEE ICC’2005, May 2005, pp. 2021–2025. [5] R. Fischer, C. Windpassinger, A. Lampe, and J. Huber, “MIMO precoding for decentralized receivers,” in Proc. IEEE ISIT’2002, 2002, p.496. [6] M. Schubert and H. Boche, “Iterative multiuser uplink and downlink beamforming under SINR constraints,” IEEE Trans. Signal Process.,vol. 53, pp. 2324–2334, Jul. 2005. [7] ——, “Solution of multiuser downlink beamforming problem with individual SINR constraints,” IEEE Trans. Veh. Technol., vol. 53, pp.18–28, Jan. 2004. [8] A. Wiesel, Y. C. Eldar, and Shamai, “Linear precoder via conic optimization for fixed MIMO receivers,” IEEE Trans. Signal Process., vol. 52,pp. 161–176, Jan. 2006. [9] N. Jindal, “MIMO broadcast channels with finite rate feed-back,” in Proc. IEEE GLOBECOM’2005, Nov. 2005. [10] R. Hunger, F. Dietrich, M. Joham, and W. Utschick, “Robust transmit zero-forcing filters,” in Proc. ITG Workshop on Smart Antennas, Munich,Mar. 2004, pp. 130–137. [11] M. B. Shenouda and T. N. Davidson, “Linear matrix inequality formulations of robust QoS precoding for broadcast channels,” in Proc.CCECE’2007, Apr. 2007, pp. 324–328. [12] M. Payaro, A. Pascual-Iserte, and M. A. Lagunas, “Robust power allocation designs for multiuser and multiantenna downlink communication systems through convex optimization,” IEEE J. Sel. Areas Commun.,vol. 25, pp. 1392–1401, Sep. 2007. [13] M. Biguesh, S. Shahbazpanahi, and A. B. Gershman, “Robust downlink power control in wireless cellular systems,” EURASIP Jl. Wireless Commun. Networking, vol. 2, pp. 261–272, 2004. [14] B. Bandemer, M. Haardt, and S. Visuri, “Liner MMSE multi-user MIMO downlink precoding for users with multple antennas,” in Proc.PIMRC’06, Sep. 2006, pp. 1–5. [15] J. Zhang, Y. Wu, S. Zhou, and J. Wang, “Joint linear transmitter and receiver design for the downlink of multiuser MIMO systems,” IEEE Commun. Lett., vol. 9, pp. 991–993, Nov. 2005. [16] S. Shi, M. Schubert, and H. Boche, “Downlink MMSE transceiver optimization for multiuser MIMO systems: Duality and sum-mse minimization,”IEEE Trans. Signal Process., vol. 55, pp. 5436–5446, Nov.2007. [17] A. Mezghani, M. Joham, R. Hunger, and W. Utschick, “Transceiver design for multi-user MIMO systems,” in Proc. WSA 2006, Mar. 2006. [18] R. Doostnejad, T. J. Lim, and E. Sousa, “Joint precoding and beamforming design for the downlink in a multiuser MIMO system,” in Proc.WiMob’2005, Aug. 2005, pp. 153–159. [19] N. Vucic, H. Boche, and S. Shi, “Robust transceiver optimization in downlink multiuser MIMO systems with channel uncertainty,” in Proc.IEEE ICC’2008, Beijing, China, May 2008. [20] A. Ben-Tal and A. Nemirovsky, “Selected topics in robust optimization,”Math. Program., vol. 112, pp. 125–158, Feb. 2007. [21] D. Bertsimas and M. Sim, “Tractable approximations to robust conic optimization problems,” Math. Program., vol. 107, pp. 5–36, Jun. 2006. [22] P. Ubaidulla and A. Chockalingam, “Robust Transceiver Design for Multiuser MIMO Downlink,” in Proc. IEEE Globecom’2008, New Orleans, USA, Dec. 2008, to appear. [23] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004. [24] G. H. Golub and C. F. V. Loan, Matrix Computations. The John Hopkins University Press, 1996.
Resumo:
Diversity embedded space time codes are high rate codes that are designed such that they have a high diversity code embedded within them. A recent work by Diggavi and Tse characterizes the performance limits that can be achieved by diversity embedded space-time codes in terms of the achievable Diversity Multiplexing Tradeoff (DMT). In particular, they have shown that the trade off is successively refinable for rayleigh fading channels with one degree of freedom using superposition coding and Successive Interference Cancellation (SIC). However, for Multiple-Input Multiple-Output (MIMO) channels, the questions of successive refinability remains open. We consider MIMO Channels under superposition coding and SIC. We derive an upper bound on the successive refinement characteristics of the DMT. We then construct explicit space time codes that achieve the derived upper bound. These codes, constructed from cyclic division algebras, have minimal delay. Our results establish that when the channel has more than one degree of freedom, the DMT is not successive refinable using superposition coding and SIC. The channels considered in this work can have arbitrary fading statistics.