968 resultados para C-C BOND


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Crystal structures of the title compounds, (I) and (II), have been determined by three-dimensional diffraction methods. Crystals of CsHIoN 4 (I) are monoclinic, space group P21/a with Z = 4, Mr= 162, a = 7.965 (1), b = 16.232 (2), c = 7.343 (1) A, fl = 113.54 (1) °, V = 890.7 A 3, D,n = 1.218, D x = 1.208 gcm -3, g(Cu Ka, 2 = 1.5418/~) = 6.47 em -1, F(000) = 344. The crystals of C9H12N4 (II) are orthorhombic, space group P21en, with Z = 4, Mr = 176, a = 7.983 (3), b = 8.075 (2), c = 14.652 (3) ./k, V = 44.43/~3, Dm= 1.219, D x = 1.237 g cm -3, #(Mo Ka, ). = 0.7107 ,/k) = 0.868 cm -1, F(000) = 376. Both structures were solved by direct methods and refined to R = 5.8% for (I) and 5.3 % for (II). The C-C double-bond distances are 1.407 (3) in (I) and 1.429 (6)/~ in (II), appreciably longer than normal. The steric and push-pull effects result in rotation about the C=C bond, the rotation angles being 20.2 (3) in (I) and 31.5 (6) o in (II).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A detailed crystallographic investigation of N-methylacetamide complexes of Li, Na, K, Mg and Ca has been made in view of its importance in the coordination chemistry and biochemistry of alkali and alkaline earth metals. The metal ions bind to the amide oxygen causing an increase in the carbonyl distance and a proportionate decrease in the central C-N bond distance. The decrease in the central C-N distance is accompanied by an increase in the distance of the adjacent C-C bond and a decrease in the adjacent C-N bond distance. The metal ion generally deviates from the direction of the lone pair of the carbonyl oxygen and also from the plane of the peptide, the out-of-plane deviation varying with the ionic potential of the cation. The metal-oxygen distance in alkali and alkaline earth metal complexes of a given coordination number also varies with the ionic potential of the cation, as does the strength of binding of the cations to the amide. The amide molecules are essentially planar in these complexes, as expected from the increased bond order of the central C-N bond. The NH bonds of the amide are generally hydrogen bonded to anions. The structures of the amide complexes are compared with those of other oxygen donor complexes of alkali and alkaline earth metals. The structural study described here also provides a basis for the interpretation of results from spectroscopic and theoretical investigations of the interaction of alkali and alkaline earth metal cations with amides.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Through-bond interactions in 1,4-dehydrobenzene preferentially stabilize the out-of-phase combination of the radical hydrids, The resultant splitting between the frontier orbitals is crucial in making Bergman cyclization a symmetry-allowed process. Orbital symmetry also inhibits the radical centers from forming a C-C bond, enabling the biradical to survive as a local minimum capable of intermolecular hydrogen abstraction, Both these factors, which are important in the design of DNA cleaving molecules, are confirmed through calculations on biradicals formed from diynes in which through-bond interactions stabilize the in-phase combination of hybrids at the radical centers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the studies reported so far on dendrimer-mediated catalysis, the efficacies of the catalytic units were studied and compared primarily across the generations. In order to identify the efficacy of an individual catalytic unit with respect to the number of such units present within a given generation, a series of catalysts were prepared within a generation. Dendrimers incorporated with phosphinemetal complexes were chosen for the study and as many as 11 catalysts within three generations were synthesized. The C-C bond-forming reactions, namely, the Heck and the Suzuki coupling reactions, were then selected to study the catalytic efficiencies of the series of partially and fully phosphine-metal complex functionalized dendrimers. The efficacies of the formation of cinnamate and biphenyl. catalyzed by the dendritic catalysts, were compared. The comparative analyses show that an individual catalytic site is far more effective in its catalytic activity when presented in multiple numbers, i.e., in a multivalent dendritic system, than as a single unit within the same generation, i.e., in a monovalent dendritic system. The study identifies the beneficial effects of the multivalent presentation of the catalytic moieties, both within and across the dendrimer generations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The bonding nature of metallocene acetylene complexes Cp2M(eta(2)-H3SiC2SiH3) 1M and CP2M (eta(2)- HC2H) 1M' (M = Ti, Zr, Hf) wits studied by density functional theory method. It is found that this acetylene complex has indeed it metallacyclopropene moiety with two in-plane M-C sigma-bonds and one out-of-plane pi-bond interacting with the metal center, resulting in the formation of it delocalized three-center and two-electron (3c-2e) system. Along with its delocalized out-of-plane bonding, this complex has been characterized its aromatic on the basis of the computed stabilizing energy and negative nucleus-independent chemical shifts (NICS). The aromatic stabilization increases from Ti to Zr and Hf, and this is because of the increased charge separation between the CP2M fragment and the H3SiC2SiH3 (also HC2H) unit. The decrease of the M-C bond length from Zr to Hf is ttributed to the increased s character of both M and C hybridization of the M-C a-bonds.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A ruthenium(II) ethylene complex, trans-[Ru(H)(C2H4)- (dppm)(2)][BF4], hearing two 1,1-bis(diphenylphosphino) methane (dppm) ligands has been synthesized and structurally characterized using X-ray crystallography. In the molecular structure, the Ru-II center shows a distorted octahedral coordination geometry formed by four P atoms of the two chelating dppm ligands, a hydride, and an ethylene ligands. The four dppm P atoms are almost co-planar with the hydride and the ethylene ligands perpendicular to this plane. The C-C bond distance of the bound ethylene is 1.375(6) angstrom, which is elongated by 0.042 angstrom as compared to free ethylene (1.333(2) angstrom). The packing diagram of the complex shows two voids or channels, which are occupied by BF4- counterion and water molecules.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The 16-electron, coordinatively unsaturated, dicationic ruthenium complex Ru(P(OH)(2)(OMe))(dppe)(2)]OTf](2) (1a) brings about the heterolysis of the C-H bond in phenylacetylene to afford the phenylacetylide complex trans-Ru(C CPh)(P(OH)(2)(OMe))(dppe)(2)]OTf] (2). The phenylacetylide complex undergoes hydrogenation to give a ruthenium hydride complex trans-Ru(H)(P(OH)(2)(OMe))(dppe)(2)]OTf] (3) and phenylacetylene via the addition of H-2 across the Ru-C bond. The 16-electron complex also reacts with HSiCl3 quite vigorously to yield a chloride complex trans-Ru(Cl)(P(OH)(2)(OMe))(dppe)(2)]OTf] (4). On the other hand, the other coordinatively unsaturated ruthenium complex Ru(P(OH)(3))(dppe)(2)]OTf](2) (1b) reacts with a base N-benzylideneaniline to afford a phosphonate complex Ru(P(O)(OH)(2))(dppe)(2)]OTf] (5) via the abstraction of one of the protons of the P(OH)(3) ligand by the base. The phenylacetylide, chloride, and the phosphonate complexes have been structurally characterized. The phosphonate complex reacts with H-2 to afford the corresponding dihydrogen complex trans-Ru(eta(2)-H-2)(P(O)(OH)(2))(dppe)(2)]OTf] (5-H2). The intact nature of the H-H bond in this species was established using variable temperature H-1 spin-lattice relaxation time measurements and the observation of a significant J(H,D) coupling in the HD isotopomer trans-Ru(eta(2)-HD)(P(O)(OH)(2))(dppe)(2)]OTf] (5-HD). (C) 2010 Elsevier B. V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The excellent metal support interaction between palladium (Pd) and titanium nitride (TiN) is exploited in designing an efficient anode material. Pd-TN, that could be useful for direct ethanol fuel cell in alkaline media. The physicochemical and electrochemical characterization of the Pd-TiN/electrolyte interface reveals an efficient oxidation of ethanol coupled with excellent stability of the catalyst under electrochemical conditions. Characterization of the interface using in situ Fourier transform infrared spectroscopy (in situ FITR) shows the production CO2 at low overvoltages revealing an efficient cleaving of the C-C bond. The performance comparison of Pd supported on TiN (Pd-TiN) with that supported on carbon (Pd-C) clearly demonstrates the advantages of TiN support over carbon. A positive chemical shift of Pd (3d) binding energy confirms the existence of metal support interaction between pd and TiN, which in turn helps weaken the Pd-CO synergetic bonding interaction. The remarkable ability of TiN to accumulate -OH species on its surface coupled with the strong adhesion of Pd makes TiN an active support material for electrocatalysts.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

C21H22N2045, M r = 398.5, orthorhombic, P212~21, a = 9.799 (1), b = 11.853 (1), c = 17.316(2)/~, V=2011.4A 3, Z=4, Dm=l.320, Dx=1.314Mgm -3, CuKa, A=1.5418A, Iz= 1.63 ram-1, F(000) = 840.0, T = 293 K, R = 0.055 for 1735 significant reflections. In the 1-methylthio-2- nitrovinyl moiety the C--C bond, 1.368 (7)A, is significantly longer than in ethylene, 1.336 (2)/~. The second harmonic generation (SHG) efficiency of this compound is only 0.25 of the urea standard. The correlation between the molecular packing and SHG is discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

DL-Proline hemisuccinic acid, C5H9NO2.1/2C4H6O4, M(r) = 174.2, P2(1/c) a = 5.254 (1), b = 17.480 (1), c = 10.230 (i) angstrom, beta = 119.60 (6)-degrees Z = 4, D(m) = 1.41 (4), D(x) = 1.42 g cm-3, R = 0.045 for 973 observed reflections. Glycyl-L-histidinium semisuccinate monohydrate, C8H13N4O3+.C4H5O4-.H2O, M(r) = 348.4, P2(1), a = 4.864 (1), b = 17.071 (2), c = 9.397 (1) angstrom, beta = 90.58-degrees, Z = 2, D(m) = 1.45 (1), D(x) = 1.48 g cm-3, R = 0.027 for 1610 observed reflections. Normal amino-acid and dipeptide aggregation patterns are preserved in the structures in spite of the presence of succinic acid/semisuccinate ions. In both the structures, the amino-acid/dipeptide layers stack in such a way that the succinic acid molecules/semisuccinate ions are enclosed in voids created during stacking. Substantial variability in the ionization state and the stoichiometry is observed in amino-acid and peptide complexes of succinic acid. Succinic acid molecules and succinate ions appear to prefer a planar centro-symmetric conformation with the two carboxyl (carboxylate) groups trans with respect to the central C=C bond. Considerable variation is seen in the departure from and modification of normal amino-acid aggregation patterns produced by the presence of succinic acid. Some of the complexes can be described as inclusion compounds with the amino acid/dipeptide as the 'host' and succinic acid/semisuccinate/succinate as the 'guest'. The effects of change in chirality, though very substantial, are not the same in different pairs of complexes involving DL and L isomers of the same amino acid.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The title hydrate, C27H23NO2 center dot H2O, features an almost planar quinoline residue (r.m.s. deviation = 0.015 angstrom) with the benzene dihedral angle = 63.80 (7)degrees] and chalcone C-C-C-O torsion angle = -103.38 (18)degrees] substituents twisted significantly out of its plane. The configuration about the C=C bond 1.340 (2) angstrom] is E. In the crystal, molecules related by the 21 symmetry operation are linked along the b axis via water molecules that form O-H center dot center dot center dot O-c and O-H center dot center dot center dot N-q hydrogen bonds (c = carbonyl and q = quinoline). A C-H center dot center dot center dot O interaction also occurs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

N,N',N `'-Tris(2-anisyl)guanidine, (ArNH)(2)C=NAr (Ar = 2-(MeO)C6H4), was cyclopallaclated with Pd(OC(O)R)(2) (R = Me, CF3) in toluene at 70 degrees C to afford palladacycles Pd{kappa(2)(C,N)-C6H3-(OMe)-3(NHC(NHAr)(=NAr))-2}(mu-OC(O)R)](2)(R = Me (1a) and CF3 (1b)) in 87% and 95% yield, respectively. Palladacycle 1a was subjected to a metathetical reaction with LiBr in aqueous ethanol at 78 degrees C to afford palladacycle Pd{kappa(2)(C,N)-C6H3(OMe)-3(NHC(NHAr)(=NAr))-2}(mu-Br)](2) (2) in 90% yield. Palladacycle 2 was subjected to a bridge-splitting reaction with Lewis bases in CH2Cl2 to afford the monomeric palladacycles Pd{kappa(2)(C,N)-C6H3(OMe)-3(NHC(NHAr)(=NAr))-2}Br(L)] (L = 2,6-Me2C5H3N (3a), 2,4-Me2C5H3N (3b), 3,5-Me2C5H3N (3c), XyNC (Xy = 2,6-Me2C6H3; 4a), (BuNC)-Bu-t (4b), and PPh3 (5)) in 87-95% yield. Palladacycle 2 upon reaction with 2 equiv of XyNC in CH2Cl2 afforded an unanticipated palladacycle, Pd{kappa(2)(C,N)-C(=NXy)(C6H3(OMe)-4)-2(N=C-(NH Ar)(2))-3} Br(CNXy)] (6) in 93% yield, and the driving force for the formation of 6 was ascribed to a ring contraction followed by amine-imine tautomerization. Palladacycles 1 a,b revealed a dimeric transoid in-in conformation with ``open book'' framework in the solid state. In solution, 1 a exhibited a fluxional behavior ascribed to the six-membered ``(C,N)Pd'' ring inversion and partly dissociates to the pincer type and kappa(2)-O,O'-OAc monomeric palladacycles by an anchimerically assisted acetate cleavage process as studied by variable-temperature H-1 NMR data. Palladacycles 3a,b revealed a unique trans configuration around the palladium with lutidine being placed trans to the Pd-C bond, whereas cis stereochemistry was observed between the Pd-C bond and the Lewis base in 4a (as determined by X-ray diffraction data) and 5 (as determined by P-31 and C-13 NMR data). The aforementioned stereochemical difference was explained by invoking relative hardness/softness of the donor atoms around the palladium center. In solution, palladacycles 3a-c exist as a mixture of two interconverting boat conformers via a planar intermediate without any bond breaking due to the six-membered ``(C,N)Pd'' ring inversion, whereas palladacycles 4a,b and 5 exist as a single isomer, as deduced from detailed H-1 NMR studies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Design and synthesis of three novel 2 + 2] self-assembled molecular rectangles 1-3 via coordination driven self-assembly of predesigned Pd(II) ligands is reported. 1,8-Diethynylanthracene was assembled with trans-Pd(PEt3)(2)Cl-2 in the presence of CuCl catalyst to yield a neutral rectangle 1 via Pd-C bond formation. Complex 1 represents the first example of a neutral molecular rectangle obtained via C-Pd coordination driven self-assembly. A new Pd-2(II) organometallic building block with 180 degrees bite-angle 1,4-bistrans-(ethynyl)Pd(PEt3)(2)(NO3)] benzene (M-2) containing ethynyl functionality was synthesized in reasonable yield by employing Sonagashira coupling reaction. Self-assembly of M-2 with two organic clip-type donors (L-2-L-3) afforded 2 + 2] self-assembled molecular rectangles 2 and 3, respectively L-2 = 1,8-bis(4-pyridylethynyl) anthracene; L-3 = 1,3-bis(3-pyridyl) isophthalamide]. The macrocycles 1-3 were fully characterized by multinuclear NMR and ESI-MS spectroscopic techniques, and in case of 1 the structure was unambiguously determined by single crystal X-ray diffraction analysis. Incorporation of Pd-ethynyl bonds helped to make the assemblies p-electron rich and fluorescent in nature. Complexes 1-2 showed quenching of fluorescence intensity in solution in presence of nitroaromatics, which are the chemical signatures of many commercially available explosives.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Theoretical studies at the HF and Becke3LYP levels using 6-31G* basis sets were carried out on a series of [n]peristylanes and [n]oxa[n]peristylanes (n = 3-6) to understand their structure and energetics. The structures of the [3]- and [4]peristylanes (1, 2) and their era-derivatives (5, 6) were calculated to have the anticipated high symmetry, C-nv. In contrast, a C-s structure (9) at HF/6-31G* and another (25) at the Becke3LYP/6-31G* level were calculated for the [5]oxa[5]peristylane. The energy difference between them is extremely small even though there are major differences in the structures indicating every soft potential energy surface: On the other hand, the potential energy surface of [6]oxa[6]peristylane is not as soft. Similar structures were also calculated for the top rings. Calculations on the seco-compounds 11-14 and 15-19 (Table 4) indicate that there is no unusual strain involved in the formation of 27 from 19. The Li+ interaction energies of the [n]oxa[n]peristylanes are 61.7 (n = 3), 72.8 (n = 4), 84.2 (n = 5) and 91.7 (n = 6) kcal mol(-1) at the Becke3LYP/6-3IG* level. Dramatic differences between the C-C bond lengths obtained from the solid state X-ray diffraction studies and those from the calculations for the [n]oxa[n]peristylanes were also observed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The treatment of a symmetrically bridged p-Bu-t-calix[4] arene bisphosphite with PdCl2(NCPh)(2) yields a novel orthopalladated derivative by a C-C bond scission of a t-butyl group attached to an aryl ring. The structure of this orthopalladated calix[4]arene derivative has been established by X-ray crystallography.