968 resultados para C-13 NMR-SPECTRA
Resumo:
Rare earth metal bis(alkyl) complexes attached by fluorenyl modified N-heterocyclic carbene (NHC) (Flu-NHC)Ln(CH2SiMe3)(2) (Flu-NHC = (C13H8CH2CH2(NCHCCHN)C6H2Me3-2,4,6); Ln = Sc (2a); Y (2b); Ho (2c); Lu (2d)), ((tBu)Flu-NHC)Ln(CH2SiMe3)(2) ((tBu)Flu-NHC = 2,7-(Bu2C13H6CH2CH2)-Bu-t(NCHCCHN)C6H2Me3-2,4,6; Ln = Sc (1a); Lu (1d)) and attached by indenyl modified N-heterocyclic carbene (Ind-NHC)Ln(CH2SiMe3)(2) (Ind-NHC = C9H6CH2CH2(NCHCCHN)C6H2Me3-2,4,6; Ln = Sc (3a); Lu (3d)), under the activation of (AlBu3)-Bu-i and [Ph3C][B(C6F5)(4)], showed varied catalytic activities toward homo- and copolymerization of ethylene and norbornene. Among which the scandium complexes, in spite of ligand type, exhibited medium to high catalytic activity for ethylene polymerization (10(5) g mol(Sc)(-1) h(-1) atm(-1)), but all were almost inert to norbornene polymerization. Remarkably, higher activity was found for the copolymerization of ethylene and norbornene when using Sc based catalytic systems, which reached up to 5 x 10(6) g mol(Sc)(-1) h(-1) atm(-1) with 2a. The composition of the isolated copolymer was varying from random to alternating according to the feed ratio of the two monomers (r(E) = 4.1, r(NB) = 0.013).
Resumo:
The copolymerizations of ethylene with polar hydroxyl monomers such as 10-undecen-1-ol, 5-hexen-1-ol and 3-buten-1-ol were investigated by the vanadium(III) catalysts bearing bidentate [N,O] ligands (1, [PhN=C(CH3)CHC(Ph)O]VCl2(THF)(2): 2, [PhN=CHC6H4O]VCl2(THF)(2); 3, [PhN=CHC(Ph)CHO]VCl2(THF)(2)). The polar monomers were pretreated by alkylaluminum before the polymerization. High catalytic activities and efficient comonomer incorporations can be easily obtained by changing monomer masking reagents and polymerization conditions in the presence of diethylaluminium chloride as a cocatalyst. The longer the spacer group, the higher the incorporation of the monomer. Under the mild conditions, the incorporation level of 10-undecen-1-ol reached 13.9 mol% in the resultant copolymers was obtained. The reactivity ratios of copolymerization (r(1) = 41.4, r(2) = 0.02, r(1)r(2) = 0.83) were evaluated by Fineman-Ross method. According to C-13 NMR spectra, polar units were located both on the main chain and at the chain end.
Resumo:
Two novel salicylaldimine-based neutral nickel(II) complexes, [(2,6-iPr(2)C(6)H(3))NCH(2-ArC6H3O)]Ni(PPh3)Ph (6, Ar = 2-(OH)C6H4; 8, Ar = 2-OH-3-(2,6-iPr(2)C(6)H(3)NCH)C6H3), have been synthesized, and their structures have also been confirmed by X-ray crystallography, elemental analysis, and H-1 and C-13 NMR spectra. An important structural feature of the two complexes is the free hydroxyl group, which allows them to react with silica pretreated with trimethylaluminum under immobilization by the formation of a covalent bond between the neutral nickel(II) complex and the pretreated silica. As active single-component catalysts, the two complexes exhibited high catalytic activities up to 1.14 and 1.47 x 10(6) g PE/mol(Ni)center dot h for ethylene polymerization, respectively, and yielded branched polymers. Requiring no cocatalyst, the two supported catalysts also showed relatively high activities up to 4.0 x 10(5) g PE/mol(Ni)center dot h and produced polyethylenes with high weight-average molecular weights of up to 120 kg/mol and a moderate degree of branching (ca. 13-26 branches per 1000 carbon atoms).
Resumo:
A new straightforward strategy for synthesis of novel hyperbranched poly (ether amide)s from readily available monomers has been developed. By optimizing the reaction conditions, the AB(2)-type monomers were formed dominantly during the initial reaction stage. Without any purification, the AB(2) intermediate was subjected to further polymerization in the presence (or absence) of an initiator, to prepare the hyperbranched polymer-bearing multihydroxyl end-groups. The influence of monomer, initiator, and solvent on polymerization and the molecular weight (MW) of the resultant polymers was studied thoroughly. The MALDI-TOF MS of the polymers indicated that the polymerization proceeded in the proposed way. Analyses of H-1 NMR and C-13 NMR spectra revealed the branched structures of the polymers obtained. These polymers exhibit high-moderate MWs and broad MW distributions determined by gel permeation chromatography (GPC) in combination with triple detectors, including refractive index, light scattering, and viscosity detectors. In addition, the examination of the solution behavior of these polymers showed that the values of intrinsic viscosity [eta] and the Mark-Houwink exponent a were remarkably lower compared with their linear analogs, because of their branched nature.
Resumo:
A novel synthesis of asymmetric bis(chlorophthalimide)s (3,4-BCPIs) has been established. The polymerizations of them produced higher molecular weight (0.38-0.51 dL/g) polyimides containing biphenyl units than those of isomeric polymers derived from symmetric bis(chlorophthalimide)s (4,4'-BCPIs) and 3,3'-BCPIs. The distribution of the formed biphenyl units of head to tail, head to head, and tail to tail in the chain of the polymers was about 58.0:21.0:21.0, determined by C-13 NMR spectra of the polymers. The composition of model compounds, determined by HPLC, was well consistent with the 13C NMR spectrum result. Comparing with polymers derived from 4,4'-BCPIs and 3,3'-BCPIs, the polymers derived from 3,4-BCPIs showed better solubilities in N,N-dimethylacetamide (DMAc), N,N-dimethyl-formamide (DMF), and N-methylpyrrolinone (NMP). Flexible films could be cast from the polymer solution with the inherent viscosities of above 0.35 dL/g. The polymer derived from asymmetric bis(chlorophthimide)s gave the highest T-g among the isomeric polymers.
Resumo:
A new method for syntheses of hyperbranched poly(ester-amide)s from commercially available A(2) and CBx type monomers has been developed on the basis of a series of model reactions. The aliphatic and semiaromatic hyperbranched poly(ester-amide)s with multihydroxyl end groups are prepared by in situ thermal polycondensation of intermediates obtained from dicarboxylic acids (A(2)) and multihydroxyl primary amines (CBx) in N,N-dimethylformamide. Analyses of FTIR, H-1 NMR, and C-13 NMR spectra revealed the structures of the polymers obtained. The MALDI-TOF MS of the polymers indicated that cyclization side reactions occurred during polymerization. The hyperbranched poly(ester-amide) s contain configurational isomers observed by C-13 and DEPT C-13 NMR spectroscopy. The DBs of the polymers were determined to be 0.38-0.62 by H-1 NMR or quantitive C-13 NMR and DEPT 135 spectra. These polymers exhibit moderate molecular weights, with broad distributions determined by size exclusion chromatography ( SEC), and possess excellent solubility in a variety of solvents such as N, N- dimethylacetamide, dimethyl sulfoxide, tetrahydrofuran, and ethanol, and display glass-transition temperatures (T(g)s) between -2.3 and 53.2 degrees C, determined by DSC measurements.
Resumo:
A series of novel polyarylethersulfone (AB)(n) block copolymers with different segment lengths have been synthesized by nucleophilic solution polycondensation of phenoxide-terminated and fluorine-terminated oligomers; random copolymers have been prepared over the whole composition ranges. The structures of the resultant copolymers have been confirmed by FTIR, C-13 NMR spectra and differential scanning calorimetry (DSC). Compared with two homopolymers and random copolymers, the block copolymers of this study possess excellent thermal stability (5% thermal decomposition under nitrogen atmosphere above 500 C) and high glass transition temperatures, and have a wide melt-processing temperature range. They may become a new class of mouldable high performance thermoplastics. (C) 2001 Society of Chemical Industry.
Resumo:
The (1) H and C-13 NMR spectra are reported for Ru(4, 4'-dimethyl-2,2'-bipyridene)(2) (2,2'-bipyridine-4,4'-dicarboxylic acid) (PF6)(2) that can be used as a new electrochemiluminescent probe in immunoasssay and nucleic acid hybridization assay. Because of the effect ol:Ru atom ligands and complex steric configuration, it is difficult to attribute spectra of the title molecular, By using 2D (1) H-(1) H COSY and (1) H-C-13 HETCOR method, the proton and C-13 NMR spectra are assigned completely, which provides a satisfactory method to quantitative and qualitative, analysis of the title moleculer in the further study.
Resumo:
The H-1 and C-13 nuclear magnetic resonance(NMR) spectra are reported for bis(2, 2'-bipyridine)(2, 2'-bipyridine-,4,4'-dicarboxylic acid) ruthenium(II) hexafluoruphosphate that has been used as a tagged molecule of electrochemiluminescent immunoassay. Because of the effect of Ru atom on ligands, it is difficult to assign its NMR spectra. BS' means of two dimensional H-1-H-1 COSY and H-1-C-13 COSY techniques, the H-1 and C-13 NMR spectra of bis (2, 2'-bipylidine) (2, 2'-bipyridine-4, 4-dicarboxylic acid) ruthenium(II) hexafluorophosphate are assigned completely. This provides a basis for NMR characterization of the nerv similar tagged molecules.
Resumo:
The H-1 and C-13 NMR spectra are reported for Ru(2,2'-bipyridine)(2)(4,4'-dimethyl-2,2'-bipyridine)(PF6)(2) that may be used as elechochemiluminescent species. Because of the effect of Ru atom on ligands and complex steric configuration, it is, difficult to attribute the spectra of the title molecular. By using 2D H-1-H-1 COSY and H-1-C-13 COSY methods, the proton and carbon-13 spectra are assigned completely. This also provides a basis for NMR characterization of the-similar new compounds.
Resumo:
A new scheme for the code of chemical environments of compounds is described in this paper, and three molecular similarity methods have been used to select nearest neighbors from four different types of probe compounds. One of the methods is based on the C-13 NMR spectra. The second method is based on the code of chemical environments and molecular topological index A(x). The third approach, i.e. the Tanimoto coefficient, is also based on the code of chemical environments, but not to use the topological index. Five nearest neighbors for each probe compound using these three molecular similarity methods were determined and taken from the database of 7309 structures. The results indicate that the scheme of the chemical environment code and the method for similarity measure of intermolecules suggested in this study are reasonable. (C) 1998 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Polymerization of styrene with the neodymium phosphonate Nd(P-507)/H2O/Al(i-Bu)(3) catalytic system has been examined. The polymer obtained was separated into a soluble and an insoluble fraction by 2-butanone extraction. C-13-NMR spectra indicate that the insoluble fraction is isotactic polystyrene and the soluble one is syndiotactic-rich atactic polystyrene. The polymerization features are described and discussed. The optimum conditions for the polymerization are as follows: [Nd] = (3.5-5.0) x 10(-2) mol/L; [styrene] = 5 mol/L; [Al]/[Nd] = 6-8 mol/mol; [H2O]/[Al] = 0.05-0.08 mol/mol; polymerization temperature around 70 degrees C. The percent yield of isotactic polystyrene (TY) is markedly affected by catalyst aging temperature. With increase of the aging temperature from 40 to 70 degrees C, TY increases from 9% to 48%. Using AlEt3 and Al(i-Bu)(2)H instead of Al(i-Bu)(3) decreases the yield of isotactic polystyrene. Different neodymium compounds give the following activity order: Nd(P-507)(3) > Nd(P-204)(3) > Nd(OPri)(3) > NdCl3 + C2HF5OH > Nd(naph)(3). With Nd(naph)(3) as catalyst, only atactic polystyrene is obtained. (C) 1998 John Wiley & Sons, Inc.
Compatibility and specific interactions in poly(beta-hydroxybutyrate) and poly(p-vinylphenol) blends
Resumo:
The miscibility and specific interactions in poly (beta-hydroxybutyrate) (PHB)/poly(p-vinylphenol) (PVPh) blends were studied by differential scanning calorimetry(DSC) , fourier transform infrared(FTIR) spectrometer and high resolution solid state C-13 NMR, A single composition-dependent glass transition temperatures were obtained by DSC which indicate the blends of PHB/PVPh were miscible in the melt state, The experimental glass transition temperatures were fitted quite well with those obtained from Couchman-Karasz equation. The FTIR study shows that the strong intermolecular hydrogen bonding exists in blends of PHB with strong proton acceptor and PVPh with strong proton donor and is the origin of its compatibility. The CPMAS C-13 NMR spectra also show that the strong hydrogen bonding exists in PHB/PVPh blends. From the T-1 rho(H) relaxation time it follows that the blends of PHB/PVPh(40/60, 20/80) studied are completely homogeneous on the scale of about 3.2 nm.
Resumo:
Three new bimetallic complexes were synthesized and crystalized by reactions of (CF3CO2)(3)Ln With R(1) AlR(2)(Ln=Nd and Y, R(1)=H, R=i-C4H9; Ln=Eu, R=R(1)=C2H5) in tetrahydrofuran solution, and their crystal structures were determined using a X-ray diffraction method. The structures and the questions on valence state and noncoplanarity in the structures were confirmed and cracked by means of H-1 NMR and C-13 NMR spectra, especially by C-13-H-1 COSY 2D NMR technique. A general formula of molecules of the three rare earth complexes was defined as follows: [(mu-CF3CO2)(2)Ln(mu-CF3CHO2)AlR(2) . 2THF](2) A mechanism on the formation of the new complexes was also proposed through the following five steps: alkylating, beta-elimination (or hydrogenation), hydrogen transfer, linkage and association. Both Y-Al and Eu-Al complexes function as a catalyst in polymerization of MMA and ECH. The polymer obtained from the first monomer is mainly syndiotactic chain structure and the polymerization of the last monomer shows higher catalytic activity. The Y-Al complex also capable of ring-opening polymerization of THF in case of adding-vary small amount of ECH and a oxonium ion mechanism of THF polymerization was suggested from the analysis of THF polymer terminal.