993 resultados para Business forecasting.
Resumo:
A Bázel–2. tőkeegyezmény bevezetését követően a bankok és hitelintézetek Magyarországon is megkezdték saját belső minősítő rendszereik felépítését, melyek karbantartása és fejlesztése folyamatos feladat. A szerző arra a kérdésre keres választ, hogy lehetséges-e a csőd-előrejelző modellek előre jelző képességét növelni a hagyományos matematikai-statisztikai módszerek alkalmazásával oly módon, hogy a modellekbe a pénzügyi mutatószámok időbeli változásának mértékét is beépítjük. Az empirikus kutatási eredmények arra engednek következtetni, hogy a hazai vállalkozások pénzügyi mutatószámainak időbeli alakulása fontos információt hordoz a vállalkozás jövőbeli fizetőképességéről, mivel azok felhasználása jelentősen növeli a csődmodellek előre jelző képességét. A szerző azt is megvizsgálja, hogy javítja-e a megfigyelések szélsőségesen magas vagy alacsony értékeinek modellezés előtti korrekciója a modellek klasszifikációs teljesítményét. ______ Banks and lenders in Hungary also began, after the introduction of the Basel 2 capital agreement, to build up their internal rating systems, whose maintenance and development are a continuing task. The author explores whether it is possible to increase the predictive capacity of business-failure forecasting models by traditional mathematical-cum-statistical means in such a way that they incorporate the measure of change in the financial indicators over time. Empirical findings suggest that the temporal development of the financial indicators of firms in Hungary carries important information about future ability to pay, since the predictive capacity of bankruptcy forecasting models is greatly increased by using such indicators. The author also examines whether the classification performance of the models can be improved by correcting for extremely high or low values before modelling.
Resumo:
Most research on stock prices is based on the present value model or the more general consumption-based model. When applied to real economic data, both of them are found unable to account for both the stock price level and its volatility. Three essays here attempt to both build a more realistic model, and to check whether there is still room for bubbles in explaining fluctuations in stock prices. In the second chapter, several innovations are simultaneously incorporated into the traditional present value model in order to produce more accurate model-based fundamental prices. These innovations comprise replacing with broad dividends the more narrow traditional dividends that are more commonly used, a nonlinear artificial neural network (ANN) forecasting procedure for these broad dividends instead of the more common linear forecasting models for narrow traditional dividends, and a stochastic discount rate in place of the constant discount rate. Empirical results show that the model described above predicts fundamental prices better, compared with alternative models using linear forecasting process, narrow dividends, or a constant discount factor. Nonetheless, actual prices are still largely detached from fundamental prices. The bubblelike deviations are found to coincide with business cycles. The third chapter examines possible cointegration of stock prices with fundamentals and non-fundamentals. The output gap is introduced to form the nonfundamental part of stock prices. I use a trivariate Vector Autoregression (TVAR) model and a single equation model to run cointegration tests between these three variables. Neither of the cointegration tests shows strong evidence of explosive behavior in the DJIA and S&P 500 data. Then, I applied a sup augmented Dickey-Fuller test to check for the existence of periodically collapsing bubbles in stock prices. Such bubbles are found in S&P data during the late 1990s. Employing econometric tests from the third chapter, I continue in the fourth chapter to examine whether bubbles exist in stock prices of conventional economic sectors on the New York Stock Exchange. The ‘old economy’ as a whole is not found to have bubbles. But, periodically collapsing bubbles are found in Material and Telecommunication Services sectors, and the Real Estate industry group.
Resumo:
Most research on stock prices is based on the present value model or the more general consumption-based model. When applied to real economic data, both of them are found unable to account for both the stock price level and its volatility. Three essays here attempt to both build a more realistic model, and to check whether there is still room for bubbles in explaining fluctuations in stock prices. In the second chapter, several innovations are simultaneously incorporated into the traditional present value model in order to produce more accurate model-based fundamental prices. These innovations comprise replacing with broad dividends the more narrow traditional dividends that are more commonly used, a nonlinear artificial neural network (ANN) forecasting procedure for these broad dividends instead of the more common linear forecasting models for narrow traditional dividends, and a stochastic discount rate in place of the constant discount rate. Empirical results show that the model described above predicts fundamental prices better, compared with alternative models using linear forecasting process, narrow dividends, or a constant discount factor. Nonetheless, actual prices are still largely detached from fundamental prices. The bubble-like deviations are found to coincide with business cycles. The third chapter examines possible cointegration of stock prices with fundamentals and non-fundamentals. The output gap is introduced to form the non-fundamental part of stock prices. I use a trivariate Vector Autoregression (TVAR) model and a single equation model to run cointegration tests between these three variables. Neither of the cointegration tests shows strong evidence of explosive behavior in the DJIA and S&P 500 data. Then, I applied a sup augmented Dickey-Fuller test to check for the existence of periodically collapsing bubbles in stock prices. Such bubbles are found in S&P data during the late 1990s. Employing econometric tests from the third chapter, I continue in the fourth chapter to examine whether bubbles exist in stock prices of conventional economic sectors on the New York Stock Exchange. The ‘old economy’ as a whole is not found to have bubbles. But, periodically collapsing bubbles are found in Material and Telecommunication Services sectors, and the Real Estate industry group.
Resumo:
Peer reviewed
Resumo:
Abstract Purpose The purpose of the study is to review recent studies published from 2007-2015 on tourism and hotel demand modeling and forecasting with a view to identifying the emerging topics and methods studied and to pointing future research directions in the field. Design/Methodology/approach Articles on tourism and hotel demand modeling and forecasting published in both science citation index (SCI) and social science citation index (SSCI) journals were identified and analyzed. Findings This review found that the studies focused on hotel demand are relatively less than those on tourism demand. It is also observed that more and more studies have moved away from the aggregate tourism demand analysis, while disaggregate markets and niche products have attracted increasing attention. Some studies have gone beyond neoclassical economic theory to seek additional explanations of the dynamics of tourism and hotel demand, such as environmental factors, tourist online behavior and consumer confidence indicators, among others. More sophisticated techniques such as nonlinear smooth transition regression, mixed-frequency modeling technique and nonparametric singular spectrum analysis have also been introduced to this research area. Research limitations/implications The main limitation of this review is that the articles included in this study only cover the English literature. Future review of this kind should also include articles published in other languages. The review provides a useful guide for researchers who are interested in future research on tourism and hotel demand modeling and forecasting. Practical implications This review provides important suggestions and recommendations for improving the efficiency of tourism and hospitality management practices. Originality/value The value of this review is that it identifies the current trends in tourism and hotel demand modeling and forecasting research and points out future research directions.
Resumo:
Data from the World Federation of Exchanges show that Brazil’s Sao Paulo stock exchange is one of the largest worldwide in terms of market value. Thus, the objective of this study is to obtain univariate and bivariate forecasting models based on intraday data from the futures and spot markets of the BOVESPA index. The interest is to verify if there exist arbitrage opportunities in Brazilian financial market. To this end, three econometric forecasting models were built: ARFIMA, vector autoregressive (VAR), and vector error correction (VEC). Furthermore, it presents the results of a Granger causality test for the aforementioned series. This type of study shows that it is important to identify arbitrage opportunities in financial markets and, in particular, in the application of these models on data of this nature. In terms of the forecasts made with these models, VEC showed better results. The causality test shows that futures BOVESPA index Granger causes spot BOVESPA index. This result may indicate arbitrage opportunities in Brazil.
Resumo:
Yield management helps hotels more profitably manage the capacity of their rooms. Hotels tend to have two types of business: transient and group. Yield management research and systems have been designed for transient business in which the group forecast is taken as a given. In this research, forecast data from approximately 90 hotels of a large North American hotel chain were used to determine the accuracy of group forecasts and to identify factors associated with accurate forecasts. Forecasts showed a positive bias and had a mean absolute percentage error (MAPE) of 40% at two months before arrival; 30% at one month before arrival; and 10-15% on the day of arrival. Larger hotels, hotels with a higher dependence on group business, and hotels that updated their forecasts frequently during the month before arrival had more accurate forecasts.
Rainfall, Mosquito Density and the Transmission of Ross River Virus: A Time-Series Forecasting Model
Resumo:
Developments in information technology will drive the change in records management; however, it should be the health information managers who drive the information management change. The role of health information management will be challenged to use information technology to broker a range of requests for information from a variety of users, including he alth consumers. The purposes of this paper are to conceptualise the role of health information management in the context of a technologically driven and managed health care environment, and to demonstrat e how this framework has been used to review and develop the undergraduate program in health information management at the Queensland University of Technology.
Resumo:
Enterprise Application Integration (EAI) is a challenging area that is attracting growing attention from the software industry and the research community. A landscape of languages and techniques for EAI has emerged and is continuously being enriched with new proposals from different software vendors and coalitions. However, little or no effort has been dedicated to systematically evaluate and compare these languages and techniques. The work reported in this paper is a first step in this direction. It presents an in-depth analysis of a language, namely the Business Modeling Language, specifically developed for EAI. The framework used for this analysis is based on a number of workflow and communication patterns. This framework provides a basis for evaluating the advantages and drawbacks of EAI languages with respect to recurrent problems and situations.