950 resultados para Building life cycle
Resumo:
The majority of worldwide structures use concrete as its main material. This happens because concrete is economically feasible, due to its undemanding production technology and case Of use. However, it is widely recognized that concrete production has a strong environmental impact in the planet. Natural aggregates use is one of the most important problems of concrete production nowadays, since they are obtained from limited, and in some countries scarce, resources. In Portugal, although there are enough stone quarries to cover coarse aggregates needs for several more years, Supplies of fine aggregates are becoming scarcer, especially in the northern part of the country. On the other hand, as concrete structures' life cycle comes to an end, an urgent need emerges to establish technically and economically viable solutions for demolition debris, other than for use as road base and quarry fill. This paper presents a partial life cycle assessment (LCA) of concrete made with fine recycled concrete aggregates performed with EcoConcrete tool. EcoConcrete is a tailor-made, interactive, learning and communications tool promoted by the Joint Project Group (JPG) on the LCA of concrete, to qualify and quantify the overall environment impact of concrete products. It consists of an interactive Excel-spreadsheet in which several environmental inputs (material quantities, distances from origin to production Site, production processes) and outputs (material, energy, emissions to air, water, soil or waste) are collected in a life cycle inventory, and are then processed to determine the environmental impact (assessment) of the analysed concrete, in terms of ozone layer depletion, smog or "greenhouse" effect.
Resumo:
Biodieselhas attracted considerable attention as a renewable, biodegradable, and nontoxic fuel and can contribute to solving the energy problems, significantly reducing the emission of gases which cause global warming. The first stage of this work was to simulate different alternative processes for producing biodiesel. The method used for the production of biodiesel is the transesterification of vegetable oilswith an alcohol in the presence of a catalyst. The raw materials used were palm oils and waste cooking oil. The second stage was a life cycle analysis for all alternatives under study, followed by an economic analysis for the alternatives that present minor impacts and which are more promising from an economic point of view. Finally,we proceeded to compare the different alternatives fromboth the point of view of life cycle and economic analysis. The feasibility of all processes was proven and the biodiesel obtained had good specifications. From the standpoint of life cycle analysis, the best alternative was the process of alkaline catalysiswith acid pretreatment for waste cooking oil. The economic analysis was done to the previous mentioned process and to the process that uses raw virgin oils, methanol, and sodium hydroxide. This process has lower investment costs but the process of alkaline catalysis with acid pre-treatment, whose main raw material is waste oil, is much more profitable and has less environmental impacts.
Resumo:
This study uses the process simulator ASPEN Plus and Life Cycle Assessment (LCA) to compare three process design alternatives for biodiesel production from waste vegetable oils that are: the conventional alkali-catalyzed process including a free fatty acids (FFAs) pre-treatment, the acid-catalyzed process, and the supercritical methanol process using propane as co-solvent. Results show that the supercritical methanol process using propane as co-solvent is the most environmentally favorable alternative. Its smaller steam consumption in comparison with the other process design alternatives leads to a lower contribution to the potential environmental impacts (PEI’s). The acid-catalyzed process generally shows the highest PEI’s, in particular due to the high energy requirements associated with methanol recovery operations.
Resumo:
This work shows the influence of using different allocation approaches when modelling the inventory analysis in a soybean biodiesel life cycle assessment (LCA). Results obtained using mass, energy and economic based allocations are compared, focusing on the following aspects: normalised potential environmental impact (PEI) categories, total PEI and relative contributions to the total PEI from each life cycle stage and environmental impact category. Similar results are obtained either using economic and energy based allocations. However, different results are obtained when mass based allocation is used when compared with the other two. This study also illustrates that using different allocation approaches in biodiesel LCA may influence the final conclusions, especially in comparative assertions, emphasising the need to perform a sensitivity analysis in the LCA interpretation step.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do Grau de Mestre em Energia e Bioenergia
Resumo:
The life cycle of Lagochilascaris minor was studied using material collected from human lesion and applying the experimental model: rodents (mice, hamsters), and carnivorae (cats, dogs). In mice given infective eggs, orally, hatch of the third stage larvae was noted in the gut wall, with migration to liver, lungs, skeletal musculature and subcutaneous tissue becoming, soon after, encysted. In cats infected with skinned carcasses of mice (60 to 235 days of infection) it was observed: hatch of third stage larvae from the nodules (cysts) in the stomach, migration through the oesophagus, pharynx, trachea, related tissues (rhino-oropharynx), and cervical lymphonodes developing to the mature stage in any of these sites on days 9-20 post inoculation (P.I.). There was no parasite development up to the mature stage in cats inoculated orally with infective eggs, which indicates that the life cycle of this parasite includes an obligatory intermediate host. In one of the cats (fed carcass of infected mice) necropsied on day 43 P.I., it was observed the occurence of the self-infective cycle of L. minor in the lung tissues and in the cervical region which was characterized by the finding of eggs in different stages of development, third stage larvae and mature worms. It's believed that some component of the carnivorae gastrointestinal tracts may preclude the development of third stage larvae from L. minor eggs what explains the interruption of the life cycle in animals fed infective eggs. It's also pointed out the role of the intermediate host in the first stages of the life cycle of this helminth.
Resumo:
Life-Cycle Civil Engineering – Biondini & Frangopol
Resumo:
Die Luftverschmutzung, die globale Erwärmung sowie die Verknappung der endlichen Ressourcen sind die größten Bedenken der vergangenen Jahrzehnte. Die Nachfrage nach jeglicher Mobilität steigt rapide. Dementsprechend bemüht ist die Automobilindustrie Lösungen für Mobilität unter dem Aspekt der Nachhaltigkeit und dem Umweltschutz anzubieten. Die Elektrifizierung hat sich hierbei als der beste Weg herausgestellt, um die Umweltprobleme sowie die Abhängigkeit von fossilen Brennstoffen zu lösen. Diese Arbeit soll einen Einblick über die Umweltauswirkungen des Hybridfahrzeuges Toyota Prius geben. Hierbei findet eine Gliederung in vier verschiedene Lebensphasen statt. Im Anschluss bietet die Sachbilanz die Möglichkeit die Umweltauswirkungen mit verschiedenen Antriebsmöglichkeiten und Brennstoffen zu vergleichen. Das Modell hat gezeigt, dass der Toyota Prius während der Nutzung einen hohen Einfluss auf das Treibhauspotenzial aufweist. Durch die Nutzung anderer Brennstoffe, wie beispielsweise Ethanol oder Methanol lassen sich die Auswirkungen am Treibhauspotenzial sowie der Verbrauch an abiotischen Ressourcen reduzieren. Vergleicht man die Elektromobilität mit der konventionellen, so ist festzustellen, dass diese Art der Mobilität die derzeit beste Möglichkeit zur Reduzierung der Umweltbelastungen bietet. Die Auswirkungen der Elektromobilität sind im hohen Maße abhängig von der Art des verwendeten Strommixes.
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores
Resumo:
In the present paper the life cycle of Triatoma sordida was studied. The mean length from egg to adult was 213 days. The mean length in days from each stage was: 24.3 (± 1.30) for the first. 32.8 (± 1.45) (2nd), 36.1 (± 1.50) (3rd), 44.6 (± 1.85) (4th) and 52.0 (± 1.92) (5th). The mean egg incubation períod was 23.2 (± 1.40). Overall mortality was 18.8% and egg viability was 82.5%.
Resumo:
In the present paper the life cycle of Rhodnius neglectus was studied. The mean length from egg to adult was 119 days. The mean length in day from each stage was: 17.4 (± 1.15) for first, 18.2 (± 1.28) for second, fourth and 29.8 (± 1.46) for fifth.
Resumo:
In the present work the life cycle of Psammolestes tertius was studied. The mean length, in days, fromeach stage was: 26.3 (± 1.7) (1st), 28.6 (± 1.8) (2nd), 28.4 (± 1.8) (3rd), 32.2 (± 1.9) (4th) and 33.5 (± 5.8) (5th). The mean egg incubation period was 15.7 days (± 1.7). Overall mortality was 48.9% and egg viability was 65.7%.
Resumo:
Based on the presentation and discussion at the 3rd Winter School on Technology Assessment, December 2012, Universidade Nova de Lisboa (Portugal), Caparica Campus, PhD programme on Technology Assessment
Resumo:
The aim of this study was to evaluate the temperature and relative humidity influence in the life cycle, mortality and fecundity patterns of Triatoma rubrovaria. Four cohorts with 60 recently laid eggs each were conformed. The cohorts were divided into two groups. In the controlled conditions group insects were maintained in a dark climatic chamber under constant temperature and humidity, whereas triatomines of the ambiental temperature group were maintained at room temperature. Average incubation time was 15.6 days in the controlled conditions group and 19.1 days in the ambiental temperature. In group controlled conditions the time from egg to adult development lasted 10 months while group ambiental temperature took four months longer. Egg eclosion rate was 99.1% and 98.3% in controlled conditions and ambiental temperature, respectively. Total nymphal mortality in controlled conditions was 52.6% whereas in ambiental temperature was 51.8%. Mean number of eggs/female was 817.6 controlled conditions and 837.1 ambiental temperature. Fluctuating temperature and humidity promoted changes in the life cycle duration and in the reproductive performance of this species, although not in the species mortality.