875 resultados para Building energy simulations
Resumo:
Il presente studio si colloca nell’ambito di una ricerca il cui obiettivo è la formulazione di criteri progettuali finalizzati alla ottimizzazione delle prestazioni energetiche delle cantine di aziende vitivinicole con dimensioni produttive medio-piccole. Nello specifico la ricerca si pone l’obiettivo di individuare degli indicatori che possano valutare l’influenza che le principali variabili progettuali hanno sul fabbisogno energetico dell’edificio e sull’andamento delle temperature all’interno dei locali di conservazione ed invecchiamento del vino. Tali indicatori forniscono informazioni sulla prestazione energetica dell’edificio e sull’idoneità dei locali non climatizzati finalizzata alla conservazione del vino Essendo la progettazione una complessa attività multidisciplinare, la ricerca ha previsto l’ideazione di un programma di calcolo in grado di gestire ed elaborare dati provenienti da diversi ambiti (ingegneristici, architettonici, delle produzioni agroindustriali, ecc.), e di restituire risultati sintetici attraverso indicatori allo scopo individuati. Il programma è stato applicato su un caso-studio aziendale rappresentativo del settore produttivo. Sono stati vagliati gli effetti di due modalità di vendemmia e di quattro soluzioni architettoniche differenti. Le soluzioni edilizie derivano dalla combinazione di diversi isolamenti termici e dalla presenza o meno di locali interrati. Per le analisi sul caso-studio ci si è avvalsi di simulazioni energetiche in regime dinamico, supportate e validate da campagne di monitoraggio termico e meteorologico all’interno dell’azienda oggetto di studio. I risultati ottenuti hanno evidenziato come il programma di calcolo concepito nell’ambito di questo studio individui le criticità dell’edificio in termini energetici e di “benessere termico” del vino e consenta una iterativa revisione delle variabili progettuale indagate. Esso quindi risulta essere uno strumento informatizzato di valutazione a supporto della progettazione, finalizzato ad una ottimizzazione del processo progettuale in grado di coniugare, in maniera integrata, gli obiettivi della qualità del prodotto, della efficienza produttiva e della sostenibilità economica ed ambientale.
Resumo:
Present research is framed within the project MODIFICA (MODelo predictivo - edIFIcios - Isla de Calor urbanA) aimed at developing a predictive model for dwelling energy performance under the urban heat island effect in order to implement it in the evaluation of real energy demand and consumption of dwellings as well as in the selection of energy retrofitting strategies. It is funded by Programa de I+D+i orientada a los retos de la sociedad 'Retos Investigación' 2013. Despite great advances on building energy performance have been achieved during the last years, available climate data is derived from weather stations placed in the outskirts of the city. Hence, urban heat island effect is not considered in energy simulations, which implies an important lack of accuracy. Since 1980's several international studies have been conducted on the urban heat island (UHI) phenomena, which modifies the atmospheric conditions of the urban centres due to urban agglomeration [1][2][3][4]. In the particular case of Madrid, multiple maps haven been generated using different methodologies during the last two decades [5][6][7]. These maps allow us to study the UHI phenomena from a wide perspective, offering however an static representation of it. Consequently a dynamic model for Madrid UHI is proposed, in order to evaluate it in a continuous way, and to be able to integrate it in building energy simulations.
Resumo:
Esta investigación se enmarca dentro del proyecto MODIFICA (modelo predictivo - Edificios - Isla de Calor Urbano), financiado por el Programa de I + D + i Orientada a los Retos de la sociedad 'Retos Investigación' de 2013. Está dirigido a desarrollar un modelo predictivo de eficiencia energética para viviendas, bajo el efecto de isla de calor urbano (AUS) con el fin de ponerla en práctica en la evaluación de la demanda de energía real y el consumo en las viviendas. A pesar de los grandes avances que se han logrado durante los últimos años en el rendimiento energético de edificios, los archivos de tiempo utilizados en la construcción de simulaciones de energía se derivan generalmente de estaciones meteorológicas situadas en las afueras de la ciudad. Por lo tanto, el efecto de la Isla de Calor Urbano (ICU) no se considera en estos cálculos, lo que implica una importante falta de precisión. Centrado en explorar cómo incluir los fenómenos ICU, el presente trabajo recopila y analiza la dinámica por hora de la temperatura en diferentes lugares dentro de la ciudad de Madrid. Abstract This research is framed within the project MODIFICA (Predictive model - Buildings - Urban Heat Island), funded by Programa de I+D+i orientada a los retos de la sociedad 'Retos Investigación' 2013. It is aimed at developing a predictive model for dwelling energy performance under the Urban Heat Island (UHI) effect in order to implement it in the evaluation of real energy demand and consumption in dwellings. Despite great advances on building energy performance have been achieved during the last years, weather files used in building energy simulations are usually derived from weather stations placed in the outskirts of the city. Hence, Urban Heat Island (UHI) effect is not considered in this calculations, which implies an important lack of accuracy. Focused on exploring how to include the UHI phenomena, the present paper compiles and analyses the hourly dynamics of temperature in different locations within the city of Madrid.
Resumo:
Within the building energy saving strategies, BIPV (building integrated photovoltaic systems) present a promising potential based on the close relationship existing between these multifunctional systems and the overall building energy balance. Building integration of STPV (semi-transparent photovoltaic) elements affects deeply the building energy demand since it influences the heating, cooling and lighting loads as well as the local electricity generation. This work analyses over different window-to-wall ratios the overall energy performance of five STPV elements, each element having a specific degree of transparency, in order to assess the energy saving potential compared to a conventional solar control glass compliant with the local technical standard. The prior optical characterization, focused to measure the spectral properties of the elements, was experimentally undertaken. The obtained data were used to perform simulations based on a reference office building using a package of specific software tools (DesignBuilder, EnergyPlus, PVsyst, and COMFEN) to take proper account of the STPV peculiarities. To evaluate the global energy performance of the STPV elements a new Energy Balance Index was formulated. The results show that for intermediate and large façade openings the energy saving potential provided by the STPV solutions ranges between 18% and 59% compared to the reference glass.
Resumo:
The National Energy Efficient Building Project (NEEBP) Phase One report, published in December 2014, investigated “process issues and systemic failures” in the administration of the energy performance requirements in the National Construction Code. It found that most stakeholders believed that under-compliance with these requirements is widespread across Australia, with similar issues being reported in all states and territories. The report found that many different factors were contributing to this outcome and, as a result, many recommendations were offered that together would be expected to remedy the systemic issues reported. To follow up on this Phase 1 report, three additional projects were commissioned as part of Phase 2 of the overall NEEBP project. This Report deals with the development and piloting of an Electronic Building Passport (EBP) tool – a project undertaken jointly by pitt&sherry and a team at the Queensland University of Technology (QUT) led by Dr Wendy Miller. The other Phase 2 projects cover audits of Class 1 buildings and issues relating to building alterations and additions. The passport concept aims to provide all stakeholders with (controlled) access to the key documentation and information that they need to verify the energy performance of buildings. This trial project deals with residential buildings but in principle could apply to any building type. Nine councils were recruited to help develop and test a pilot electronic building passport tool. The participation of these councils – across all states – enabled an assessment of the extent to which these councils are currently utilising documentation; to track the compliance of residential buildings with the energy performance requirements in the National Construction Code (NCC). Overall we found that none of the participating councils are currently compiling all of the energy performance-related documentation that would demonstrate code compliance. The key reasons for this include: a major lack of clarity on precisely what documentation should be collected; cost and budget pressures; low public/stakeholder demand for the documentation; and a pragmatic judgement that non-compliance with any regulated documentation requirements represents a relatively low risk for them. Some councils reported producing documentation, such as certificates of final completion, only on demand, for example. Only three of the nine council participants reported regularly conducting compliance assessments or audits utilising this documentation and/or inspections. Overall we formed the view that documentation and information tracking processes operating within the building standards and compliance system are not working to assure compliance with the Code’s energy performance requirements. In other words the Code, and its implementation under state and territory regulatory processes, is falling short as a ‘quality assurance’ system for consumers. As a result it is likely that the new housing stock is under-performing relative to policy expectations, consuming unnecessary amounts of energy, imposing unnecessarily high energy bills on occupants, and generating unnecessary greenhouse gas emissions. At the same time, Councils noted that the demand for documentation relating to building energy performance was low. All the participant councils in the EBP pilot agreed that documentation and information processes need to work more effectively if the potential regulatory and market drivers towards energy efficient homes are to be harnessed. These findings are fully consistent with the Phase 1 NEEBP report. It was also agreed that an EBP system could potentially play an important role in improving documentation and information processes. However, only one of the participant councils indicated that they might adopt such a system on a voluntary basis. The majority felt that such a system would only be taken up if it were: - A nationally agreed system, imposed as a mandatory requirement under state or national regulation; - Capable of being used by multiple parties including councils, private certifiers, building regulators, builders and energy assessors in particular; and - Fully integrated into their existing document management systems, or at least seamlessly compatible rather than a separate, unlinked tool. Further, we note that the value of an EBP in capturing statistical information relating to the energy performance of buildings would be much greater if an EBP were adopted on a nationally consistent basis. Councils were clear that a key impediment to the take up of an EBP system is that they are facing very considerable budget and staffing challenges. They report that they are often unable to meet all community demands from the resources available to them. Therefore they are unlikely to provide resources to support the roll out of an EBP system on a voluntary basis. Overall, we conclude from this pilot that the public good would be well served if the Australian, state and territory governments continued to develop and implement an Electronic Building Passport system in a cost-efficient and effective manner. This development should occur with detailed input from building regulators, the Australian Building Codes Board (ABCB), councils and private certifiers in the first instance. This report provides a suite of recommendations (Section 7.2) designed to advance the development and guide the implementation of a national EBP system.
Resumo:
468 p.
Resumo:
A methodology for the analysis of building energy retrofits has been developed for a diverse set of buildings at the Royal Botanic Gardens (RBG), Kew in southwest London, UK. The methodology requires selection of appropriate building simulation tools dependent on the nature of the principal energy demand. This has involved the development of a stand-alone model to simulate the heat flow in botanical glasshouses, as well as stochastic simulation of electricity demand for buildings with high equipment density and occupancy-led operation. Application of the methodology to the buildings at RBG Kew illustrates the potential reduction in energy consumption at the building scale achievable from the application of retrofit measures deemed appropriate for heritage buildings and the potential benefit to be gained from onsite generation and supply of energy. © 2014 Elsevier Ltd.
Resumo:
Political drivers such as the Kyoto protocol, the EU Energy Performance of Buildings Directive and the Energy end use and Services Directive have been implemented in response to an identified need for a reduction in human related CO2 emissions. Buildings account for a significant portion of global CO2 emissions, approximately 25-30%, and it is widely acknowledged by industry and research organisations that they operate inefficiently. In parallel, unsatisfactory indoor environmental conditions have proven to negatively impact occupant productivity. Legislative drivers and client education are seen as the key motivating factors for an improvement in the holistic environmental and energy performance of a building. A symbiotic relationship exists between building indoor environmental conditions and building energy consumption. However traditional Building Management Systems and Energy Management Systems treat these separately. Conventional performance analysis compares building energy consumption with a previously recorded value or with the consumption of a similar building and does not recognise the fact that all buildings are unique. Therefore what is required is a new framework which incorporates performance comparison against a theoretical building specific ideal benchmark. Traditionally Energy Managers, who work at the operational level of organisations with respect to building performance, do not have access to ideal performance benchmark information and as a result cannot optimally operate buildings. This thesis systematically defines Holistic Environmental and Energy Management and specifies the Scenario Modelling Technique which in turn uses an ideal performance benchmark. The holistic technique uses quantified expressions of building performance and by doing so enables the profiled Energy Manager to visualise his actions and the downstream consequences of his actions in the context of overall building operation. The Ideal Building Framework facilitates the use of this technique by acting as a Building Life Cycle (BLC) data repository through which ideal building performance benchmarks are systematically structured and stored in parallel with actual performance data. The Ideal Building Framework utilises transformed data in the form of the Ideal Set of Performance Objectives and Metrics which are capable of defining the performance of any building at any stage of the BLC. It is proposed that the union of Scenario Models for an individual building would result in a building specific Combination of Performance Metrics which would in turn be stored in the BLC data repository. The Ideal Data Set underpins the Ideal Set of Performance Objectives and Metrics and is the set of measurements required to monitor the performance of the Ideal Building. A Model View describes the unique building specific data relevant to a particular project stakeholder. The energy management data and information exchange requirements that underlie a Model View implementation are detailed and incorporate traditional and proposed energy management. This thesis also specifies the Model View Methodology which complements the Ideal Building Framework. The developed Model View and Rule Set methodology process utilises stakeholder specific rule sets to define stakeholder pertinent environmental and energy performance data. This generic process further enables each stakeholder to define the resolution of data desired. For example, basic, intermediate or detailed. The Model View methodology is applicable for all project stakeholders, each requiring its own customised rule set. Two rule sets are defined in detail, the Energy Manager rule set and the LEED Accreditor rule set. This particular measurement generation process accompanied by defined View would filter and expedite data access for all stakeholders involved in building performance. Information presentation is critical for effective use of the data provided by the Ideal Building Framework and the Energy Management View definition. The specifications for a customised Information Delivery Tool account for the established profile of Energy Managers and best practice user interface design. Components of the developed tool could also be used by Facility Managers working at the tactical and strategic levels of organisations. Informed decision making is made possible through specified decision assistance processes which incorporate the Scenario Modelling and Benchmarking techniques, the Ideal Building Framework, the Energy Manager Model View, the Information Delivery Tool and the established profile of Energy Managers. The Model View and Rule Set Methodology is effectively demonstrated on an appropriate mixed use existing ‘green’ building, the Environmental Research Institute at University College Cork, using the Energy Management and LEED rule sets. Informed Decision Making is also demonstrated using a prototype scenario for the demonstration building.
Resumo:
Current building regulations are generally prescriptive in nature. It is widely accepted in Europe that this form of building regulation is stifling technological innovation and leading to inadequate energy efficiency in the building stock. This has increased the motivation to move design practices towards a more ‘performance-based’ model in order to mitigate inflated levels of energy-use consumed by the building stock. A performance based model assesses the interaction of all building elements and the resulting impact on holistic building energy-use. However, this is a nebulous task due to building energy-use being affected by a myriad of heterogeneous agents. Accordingly, it is imperative that appropriate methods, tools and technologies are employed for energy prediction, measurement and evaluation throughout the project’s life cycle. This research also considers that it is imperative that the data is universally accessible by all stakeholders. The use of a centrally based product model for exchange of building information is explored. This research describes the development and implementation of a new building energy-use performance assessment methodology. Termed the Building Effectiveness Communications ratios (BECs) methodology, this performance-based framework is capable of translating complex definitions of sustainability for energy efficiency and depicting universally understandable views at all stage of the Building Life Cycle (BLC) to the project’s stakeholders. The enabling yardsticks of building energy-use performance, termed Ir and Pr, provide continuous design and operations feedback in order to aid the building’s decision makers. Utilised effectively, the methodology is capable of delivering quality assurance throughout the BLC by providing project teams with quantitative measurement of energy efficiency. Armed with these superior enabling tools for project stakeholder communication, it is envisaged that project teams will be better placed to augment a knowledge base and generate more efficient additions to the building stock.
Resumo:
In the last fifty years, Nunavut has developed a deep dependence on diesel for virtually all of its energy needs, including electricity. This dependence has created a number of economic, environmental and health related challenges in the territory, with an estimated 20% of the territory’s annual budget being spent on energy, thereby limiting the Government of Nunavut’s ability to address other essential infrastructure and societal needs, such as education, nutrition and health care and housing. One solution to address this diesel dependency is the use of renewable energy technologies (RETs), such as wind, solar and hydropower. As such, this thesis explores energy alternatives in Nunavut, and through RETScreen renewable energy simulations, found that solar power and wind power are technically viable options for Nunavut communities and a potentially successful means to offset diesel-generated electricity in Nunavut. However, through this analysis it was also discovered that accurate data or renewable resources are often unavailable for most Nunavut communities. Moreover, through qualitative open-ended interviews, the perspectives of Nunavut residents with regards to developing RETs in Nunavut were explored, and it was found that respondents generally supported the use of renewable energy in their communities, while acknowledging that there still remains a knowledge gap among residents regarding renewable energy, stemming from a lack of communication between the communities, government and the utility company. In addition, the perceived challenges, opportunities and gaps that exist with regards to renewable energy policy and program development were discussed with government policy-makers through further interviews, and it was discovered that often government departments work largely independently of each other rather than collaboratively, creating gaps and oversights in renewable energy policy in Nunavut. Combined, the results of this thesis were used to develop a number of recommended policy actions that could be undertaken by the territorial and federal government to support a shift towards renewable energy in order to develop a sustainable and self-sufficient energy plan in Nunavut. They include: gathering accurate renewable resource data in Nunavut; increasing community consultations on the subject of renewable energy; building strong partnerships with universities, colleges and industry; developing a knowledge sharing network; and finally increasing accessibility to renewable energy programs and policies in Nunavut.
Resumo:
Building Information Modelling (BIM) is growing in pace, not only in design and construction stages, but also in the analysis of facilities throughout their life cycle. With this continued growth and utilisation of BIM processes, comes the possibility to adopt such procedures, to accurately measure the energy efficiency of buildings, to accurately estimate their energy usage. To this end, the aim of this research is to investigate if the introduction of BIM Energy Performance Assessment in the form of software analysis, provides accurate results, when compared with actual energy consumption recorded. Through selective sampling, three domestic case studies are scrutinised, with baseline figures taken from existing energy providers, the results scrutinised and compared with calculations provided from two separate BIM energy analysis software packages. Of the numerous software packages available, criterion sampling is used to select two of the most prominent platforms available on the market today. The two packages selected for scrutiny are Integrated Environmental Solutions - Virtual Environment (IES-VE) and Green Building Studio (GBS). The results indicate that IES-VE estimated the energy use in region of ±8% in two out of three case studies while GBS estimated usage approximately ±5%. The findings indicate that the introduction of BIM energy performance assessment, using proprietary software analysis, is a viable alternative to manual calculations of building energy use, mainly due to the accuracy and speed of assessing, even the most complex models. Given the surge in accurate and detailed BIM models and the importance placed on the continued monitoring and control of buildings energy use within today’s environmentally conscious society, this provides an alternative means by which to accurately assess a buildings energy usage, in a quick and cost effective manner.
Resumo:
Building energy consumption(BEC) accounting and assessment is fundamental work for building energy efficiency(BEE) development. In existing Chinese statistical yearbook, there is no specific item for BEC accounting and relevant data are separated and mixed with other industry consumption. Approximate BEC data can be acquired from existing energy statistical yearbook. For BEC assessment, caloric values of different energy carriers are adopted in energy accounting and assessment field. This methodology obtained much useful conclusion for energy efficiency development. While the traditional methodology concerns only on the energy quantity, energy classification issue is omitted. Exergy methodology is put forward to assess BEC. With the new methodology, energy quantity and quality issues are both concerned in BEC assessment. To illustrate the BEC accounting and exergy assessment, a case of Chongqing in 2004 is shown. Based on the exergy analysis, BEC of Chongqing in 2004 accounts for 17.3% of the total energy consumption. This result is quite common to that of traditional methodology. As far as energy supply efficiency is concerned, the difference is highlighted by 0.417 of the exergy methodology to 0.645 of the traditional methodology.
Resumo:
Heating, ventilation, air conditioning and refrigeration (HVAC&R) systems account for more than 60% of the energy consumption of buildings in the UK. However, the effect of the variety of HVAC&R systems on building energy performance has not yet been taken into account within the existing building energy benchmarks. In addition, the existing building energy benchmarks are not able to assist decision-makers with HVAC&R system selection. This study attempts to overcome these two deficiencies through the performance characterisation of 36 HVAC&R systems based on the simultaneous dynamic simulation of a building and a variety of HVAC&R systems using TRNSYS software. To characterise the performance of HVAC&R systems, four criteria are considered; energy consumption, CO2 emissions, thermal comfort and indoor air quality. The results of the simulations show that, all the studied systems are able to provide an acceptable level of indoor air quality and thermal comfort. However, the energy consumption and amount of CO2 emissions vary. One of the significant outcomes of this study reveals that combined heating, cooling and power systems (CCHP) have the highest energy consumption with the lowest energy related CO2 emissions among the studied HVAC&R systems.
Resumo:
Site-specific meteorological forcing appropriate for applications such as urban outdoor thermal comfort simulations can be obtained using a newly coupled scheme that combines a simple slab convective boundary layer (CBL) model and urban land surface model (ULSM) (here two ULSMs are considered). The former simulates daytime CBL height, air temperature and humidity, and the latter estimates urban surface energy and water balance fluxes accounting for changes in land surface cover. The coupled models are tested at a suburban site and two rural sites, one irrigated and one unirrigated grass, in Sacramento, U.S.A. All the variables modelled compare well to measurements (e.g. coefficient of determination = 0.97 and root mean square error = 1.5 °C for air temperature). The current version is applicable to daytime conditions and needs initial state conditions for the CBL model in the appropriate range to obtain the required performance. The coupled model allows routine observations from distant sites (e.g. rural, airport) to be used to predict air temperature and relative humidity in an urban area of interest. This simple model, which can be rapidly applied, could provide urban data for applications such as air quality forecasting and building energy modelling, in addition to outdoor thermal comfort.
Resumo:
Recent studies have shown that the optical properties of building exterior surfaces are important in terms of energy use and thermal comfort. While the majority of the studies are related to exterior surfaces, the radiation properties of interior surfaces are less thoroughly investigated. Development in the coil-coating industries has now made it possible to allocate different optical properties for both exterior and interior surfaces of steel-clad buildings. The aim of this thesis is to investigate the influence of surface radiation properties with the focus on the thermal emittance of the interior surfaces, the modeling approaches and their consequences in the context of the building energy performance and indoor thermal environment. The study consists of both numerical and experimental investigations. The experimental investigations include parallel field measurements on three similar test cabins with different interior and exterior surface radiation properties in Borlänge, Sweden, and two ice rink arenas with normal and low emissive ceiling in Luleå, Sweden. The numerical methods include comparative simulations by the use of dynamic heat flux models, Building Energy Simulation (BES), Computational Fluid Dynamics (CFD) and a coupled model for BES and CFD. Several parametric studies and thermal performance analyses were carried out in combination with the different numerical methods. The parallel field measurements on the test cabins include the air, surface and radiation temperatures and energy use during passive and active (heating and cooling) measurements. Both measurement and comparative simulation results indicate an improvement in the indoor thermal environment when the interior surfaces have low emittance. In the ice rink arenas, surface and radiation temperature measurements indicate a considerable reduction in the ceiling-to-ice radiation by the use of low emittance surfaces, in agreement with a ceiling-toice radiation model using schematic dynamic heat flux calculations. The measurements in the test cabins indicate that the use of low emittance surfaces can increase the vertical indoor air temperature gradients depending on the time of day and outdoor conditions. This is in agreement with the transient CFD simulations having the boundary condition assigned on the exterior surfaces. The sensitivity analyses have been performed under different outdoor conditions and surface thermal radiation properties. The spatially resolved simulations indicate an increase in the air and surface temperature gradients by the use of low emittance coatings. This can allow for lower air temperature at the occupied zone during the summer. The combined effect of interior and exterior reflective coatings in terms of energy use has been investigated by the use of building energy simulation for different climates and internal heat loads. The results indicate possible energy savings by the smart choice of optical properties on interior and exterior surfaces of the building. Overall, it is concluded that the interior reflective coatings can contribute to building energy savings and improvement of the indoor thermal environment. This can be numerically investigated by the choice of appropriate models with respect to the level of detail and computational load. This thesis includes comparative simulations at different levels of detail.