931 resultados para Budgetary Deficits
Resumo:
A sub-chronic administration of phencyclidine to the rat brings about enduring pathophysiological and cognitive changes that resemble some features of schizophrenia. The present study aimed to determine whether the behavioural consequence of this phencyclidine regime extends to a long-term disruption of social interaction that might provide a parallel with some negative symptoms of the disease. Rats were treated with phencyclidine (2mg/kg bi-daily for 1 week) or vehicle followed by a drug-free period. Social interaction was assessed 24h, 1 week, 3 weeks and 6 weeks post-treatment. A long-lasting disturbance of social behaviour was observed in the phencyclidine group, namely more contact and non-contact interaction with an unfamiliar target rat at all time points. Six weeks post-phencyclidine, analysis of brains showed a reduction in expression of parvalbumin immunoreactive neurons in the hippocampus with significant reductions localised to the CA1 and dentate gyrus regions. These results show that sub-chronic phencyclidine produces long-lasting disruptions in social interaction that, however, do not model the social withdrawal seen in patients with schizophrenia. These disturbances of social behaviour may be associated with concurrent pathophysiological brain changes.
Resumo:
OBJECTIVE:
To compare the performance of patients with mild-moderate Alzheimer's disease (AD) and vascular dementia (VaD) on tests of information processing and attention.
METHOD:
Patients with AD (n=75) and VaD (n=46) were recruited from a memory clinic along with dementia-free participants (n=28). They underwent specific tests of attention from the Cognitive Drug Research battery, and pen and paper tests including Colour Trails A and B and Stroop. All patients had a CT brain scan that was independently scored for white-matter change/ischaemia.
RESULTS:
Attention was impaired in both AD and VaD patients. VaD patients had more impaired choice reaction times and were less accurate on a vigilance test measuring sustained attention. Deficits in selective and divided attention occurred in both patient groups and showed the strongest correlations with Mini Mental State Examination scores.
CONCLUSION:
This study demonstrates problems with the attentional network in mild-moderate AD and VaD. The authors propose that attention should be tested routinely in a memory clinic setting.
Resumo:
Studies in sensory neuroscience reveal the critical importance of accurate sensory perception for cognitive development. There is considerable debate concerning the possible sensory correlates of phonological processing, the primary cognitive risk factor for developmental dyslexia. Across languages, children with dyslexia have a specific difficulty with the neural representation of the phonological structure of speech. The identification of a robust sensory marker of phonological difficulties would enable early identification of risk for developmental dyslexia and early targeted intervention. Here, we explore whether phonological processing difficulties are associated with difficulties in processing acoustic cues to speech rhythm. Speech rhythm is used across languages by infants to segment the speech stream into words and syllables. Early difficulties in perceiving auditory sensory cues to speech rhythm and prosody could lead developmentally to impairments in phonology. We compared matched samples of children with and without dyslexia, learning three very different spoken and written languages, English, Spanish, and Chinese. The key sensory cue measured was rate of onset of the amplitude envelope (rise time), known to be critical for the rhythmic timing of speech. Despite phonological and orthographic differences, for each language, rise time sensitivity was a significant predictor of phonological awareness, and rise time was the only consistent predictor of reading acquisition. The data support a language-universal theory of the neural basis of developmental dyslexia on the basis of rhythmic perception and syllable segmentation. They also suggest that novel remediation strategies on the basis of rhythm and music may offer benefits for phonological and linguistic development.
Resumo:
The core difficulty in developmental dyslexia across languages is a "phonological deficit", a specific difficulty with the neural representation of the sound structure of words. Recent data across languages suggest that this phonological deficit arises in part from inefficient auditory processing of the rate of change of the amplitude envelope at syllable onset (inefficient sensory processing of rise time). Rise time is a complex percept that also involves changes in duration and perceived intensity. Understanding the neural mechanisms that give rise to the phonological deficit in dyslexia is important for optimising educational interventions. In a three-deviant passive 'oddball' paradigm and a corresponding blocked 'deviant-alone' control condition we recorded ERPs to tones varying in rise time, duration and intensity in children with dyslexia and typically developing children longitudinally. We report here results from test Phases 1 and 2, when participants were aged 8-10. years. We found an MMN to duration, but not to rise time nor intensity deviants, at both time points for both groups. For rise time, duration and intensity we found group effects in both the Oddball and Blocked conditions. There was a slower fronto-central P1 response in the dyslexic group compared to controls. The amplitude of the P1 fronto-centrally to tones with slower rise times and lower intensity was smaller compared to tones with sharper rise times and higher intensity in the Oddball condition, for children with dyslexia only. The latency of this ERP component for all three stimuli was shorter on the right compared to the left hemisphere, only for the dyslexic group in the Blocked condition. Furthermore, we found decreased N1c amplitude to tones with slower rise times compared to tones with sharper rise times for children with dyslexia, only in the Oddball condition. Several other effects of stimulus type, age and laterality were also observed. Our data suggest that neuronal responses underlying some aspects of auditory sensory processing may be impaired in dyslexia. © 2011 Elsevier Inc.
Resumo:
AIM:
We examined the effect of partial hearing, including cochlear implantation, on the development of motor skills in children (aged 6-12y).
METHOD:
Three independent groups of children were selected: a partial hearing group (n=25 [14 males, 11 females]; mean age 8y 8mo, SD 1y 10mo), a nonverbal IQ-matched group (n=27 [15 males, 12 females]; mean age 9y, SD 1y 6mo), and an age-matched group (n=26 [8 males, 18 females]; mean age 8y 8mo, SD 1y 7mo) from three schools with special units for children with partial hearing. All children with partial hearing had a bilateral hearing loss >60 decibels. Motor and balance skills were assessed using the Movement Assessment Battery for Children (MABC) and two protocols from the NeuroCom Balance Master clinical procedures.
RESULTS:
The mean standardized total MABC score of the children with partial hearing (95% confidence interval [CI] 71.8-88.7) was significantly lower than both the age-matched (95% CI 95.8-111.4; p<0.01) and the IQ-matched (95% CI 87.6-103.0; p=0.03) comparison groups. The children with partial hearing had particular difficulties with balance, most notably during tests of intersensory demand. However, subgroup analyses revealed that the effect of cochlear implantation was clearly dependent on the nature of the task.
INTERPRETATION:
Children with partial hearing are at high risk of clinical levels of motor deficit, with balance difficulties providing support for conventional vestibular deficit theory. However, the effect of cochlear implantation suggests that other sensory systems may be involved. A broader ecological perspective, which takes into account factors external to the child, may prove a useful framework for future research.
Resumo:
Behavioral effects of a novel anti-inflammatory SEN1176 were investigated. This pyrrolo[3,2-e][1,2,4]triazolo[1,5-a]pyrimidine suppresses amyloid-ß (Aß)1-42-induced macrophage production of nitric oxide, TNF-a, IL-1ß, and IL-6 in a dose-dependent fashion, an activity profile consistent with SEN1176 being a neuroinflammation inhibitor. Using male Sprague-Dawley rats, SEN1176 was examined relative to detrimental behavioral effects induced following bilateral intrahippocampal (IH) injections of aggregated Aß1-42. The rats were trained to respond under an alternating-lever cyclic-ratio (ALCR) schedule of food reinforcement, enabling measurement of parameters of operant performance that reflect aspects of learning and memory. Under the ALCR schedule, orally administered SEN1176 at 5, 20, or 30 mg/kg was effective in reducing the behavioral deficit caused by bilateral IH aggregated Aß1-42 injections in a dose-related manner over a 90-day treatment period. SEN1176 at 20 and 30 mg/kg significantly reduced lever switching errors and, at doses of 5, 10, and 30 mg/kg, significantly reduced incorrect lever perseverations, indicating a reduction of the behavioral deficit induced as a result of inflammation following IH Aß1-42 injections. When treatment with SEN1176 was instigated 30 days after IH Aß1-42 injections, it resulted in progressive protection, and withdrawal of SEN1176 treatment 60 days after IH Aß1-42 injections revealed partial retention of the protective effect. SEN1176 also significantly reduced numbers of activated astrocytes adjacent to the aggregated Aß1-42 injection sites. These results indicate the potential of SEN1176 for alleviating chronic neuroinflammatory processes related to brain Aß deposition that affect learning and memory in Alzheimer's disease.
Resumo:
Decreased cerebral blood flow causes cognitive impairments and neuronal injury in vascular dementia. In the present study, we reported that donepezil, a cholinesterase inhibitor, improved transient global cerebral ischemia-induced spatial memory impairment in gerbils. Treatment with 5mg/kg of donepezil for 21 consecutive days following a 10-min period of ischemia significantly inhibited delayed neuronal death in the hippocampal CA1 region. In Morris water maze test, memory impairment was significantly improved by donepezil treatment. Western blot analysis showed that donepezil treatment prevented reductions in p-CaMKII and p-CREB protein levels in the hippocampus. These results suggest that donepezil attenuates the memory deficit induced by transient global cerebral ischemia and this neuroprotection may be associated with the phosphorylation of CaMKII and CERB in the hippocampus.