991 resultados para Bubble rise velocity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An on-board space experiment of bubble thermocapillary migration was performed in the Chinese 22nd recoverable satellite in 2005. Silicone oil of nominal viscosity 5cSt was used as the continuous phase in the experiment. Air bubbles were injected into the liquid in the same direction as the constant temperature gradient in the liquid. The velocities of bubbles were obtained by recording the paths of the bubbles. The results indicate that the scaled velocity of bubbles decreases with an increase of the Marangoni number extended to 9288, which agrees with the results of previous space experiments and numerical simulation. In addition, the interaction between two bubbles was also observed in the space experiment. The trajectories and the velocities of the bubbles were obtained. The two-bubble experiment results are also consistent with the theoretical analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The piezoelastodynamic field equations are solved to determine the crack velocity at bifurcation for poled ferroelectric materials where the applied electrical field and mechanical stress can be varied. The underlying physical mechanism, however, may not correspond to that assumed in the analytical model. Bifurcation has been related to the occurrence of a pair of maximum circumferential stress oriented symmetrically about the moving crack path. The velocity at which this behavior prevails has been referred to as the limiting crack speed. Unlike the classical approach, bifurcation will be identified with finite distances ahead of a moving crack. Nucleation of microcracks can thus be modelled in a single formulation. This can be accomplished by using the energy density function where fracture initiation is identified with dominance of dilatation in relation to distortion. Poled ferroelectric materials are selected for this study because the microstructure effects for this class of materials can be readily reflected by the elastic, piezoelectic and dielectric permittivity constants at the macroscopic scale. Existing test data could also shed light on the trend of the analytical predictions. Numerical results are thus computed for PZT-4 and compared with those for PZT-6B in an effort to show whether the branching behavior would be affected by the difference in the material microstructures. A range of crack bifurcation speed upsilon(b) is found for different r/a and E/sigma ratios. Here, r and a stand for the radial distance and half crack length, respectively, while E and a for the electric field and mechanical stress. For PZT-6B with upsilon(b) in the range 100-1700 m/s, the bifurcation angles varied from +/-6degrees to +/-39degrees. This corresponds to E/sigma of -0.072 to 0.024 V m/N. At the same distance r/a = 0.1, PZT-4 gives upsilon(b) values of 1100-2100 m/s; bifurcation angles of +/-15degrees to +/-49degrees; and E/sigma of -0.056 to 0.059 V m/N. In general, the bifurcation angles +/-theta(0) are found to decrease with decreasing crack velocity as the distance r/a is increased. Relatively speaking, the speed upsilon(b) and angles +/-theta(0) for PZT-4 are much greater than those for PZT-6B. This may be attributed to the high electromechanical coupling effect of PZT-4. Using upsilon(b)(0) as a base reference, an equality relation upsilon(b)(-) < upsilon(b)(0) < upsilon(b)(+) can be established. The superscripts -, 0 and + refer, respectively, to negative, zero and positive electric field. This is reminiscent of the enhancement and retardation of crack growth behavior due to change in poling direction. Bifurcation characteristics are found to be somewhat erratic when r/a approaches the range 10(-2)-10(-1) where the kinetic energy densities would fluctuate and then rise as the distance from the moving crack is increased. This is an artifact introduced by the far away condition of non-vanishing particle velocity. A finite kinetic energy density prevails at infinity unless it is made to vanish in the boundary value problem. Future works are recommended to further clarify the physical mechanism(s) associated with bifurcation by means of analysis and experiment. Damage at the microscopic level needs to be addressed since it has been known to affect the macrocrack speeds and bifurcation characteristics. (C) 2002 Published by Elsevier Science Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this work is to extend experimental and theoretical understanding of horizontal Bloch line (HBL) motion in magnetic bubble materials. The present theory of HBL motion is reviewed, and then extended to include transient effects in which the internal domain wall structure changes with time. This is accomplished by numerically solving the equations of motion for the internal azimuthal angle ɸ and the wall position q as functions of z, the coordinate perpendicular to the thin-film material, and time. The effects of HBL's on domain wall motion are investigated by comparing results from wall oscillation experiments with those from the theory. In these experiments, a bias field pulse is used to make a step change in equilibrium position of either bubble or stripe domain walls, and the wall response is measured by using transient photography. During the initial response, the dynamic wall structure closely resembles the initial static structure. The wall accelerates to a relatively high velocity (≈20 m/sec), resulting in a short (≈22 nsec ) section of initial rapid motion. An HBL gradually forms near one of the film surfaces as a result of local dynamic properties, and moves along the wall surface toward the film center. The presence of this structure produces low-frequency, triangular-shaped oscillations in which the experimental wall velocity is nearly constant, vs≈ 5-8 m/sec. If the HBL reaches the opposite surface, i.e., if the average internal angle reaches an integer multiple of π, the momentum stored in the HBL is lost, and the wall chirality is reversed. This results in abrupt transitions to overdamped motion and changes in wall chirality, which are observed as a function of bias pulse amplitude. The pulse amplitude at which the nth punch- through occurs just as the wall reaches equilibrium is given within 0.2 0e by Hn = (2vsH'/γ)1/2 • (nπ)1/2 + Hsv), where H' is the effective field gradient from the surrounding domains, and Hsv is a small (less than 0.03 0e), effective drag field. Observations of wall oscillation in the presence of in-plane fields parallel to the wall show that HBL formation is suppressed by fields greater than about 40 0e (≈2πMs), resulting in the high-frequency, sinusoidal oscillations associated with a simple internal wall structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the effects of wake/leading-edge interactions were studied at off-design conditions. Measurements were performed on the stator-blade suction surface at midspan. The leading-edge flow-field was investigated using hotwire micro-traverses, hotfilm surface shear-stress sensors and pressure micro-tappings. The trailing-edge flow-field was investigated using hotwire boundary-layer traverses. Unsteady CFD calculations were also performed to aid the interpretation of the results. At low flow coefficients, the time-averaged momentum thickness of the leading-edge boundary layer was found to rise as the flow coefficient was reduced. The time-resolved momentum-thickness rose due to the interaction of the incoming rotor wake. As the flow coefficient was reduced, the incoming wakes increased in pitch-wise extent, velocity deficit and turbulence intensity. This increased both the time-resolved rise in the momentum thickness and the turbulent spot production within the wake affected boundary-layer. Close to stall, a drop in the leading-edge momentum thickness was observed in-between wake events. This was associated with the formation of a leading-edge separation bubble in-between wake events. The wake interaction with the bubble gave rise to a shedding phenomenon, which produced large length scale disturbances in the surface shear stress. Copyright © 2008 by ASME.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on electrical transport measurements at high current densities on optimally doped YBa 2Cu 3O 7-δ thin films grown on vicinal SrTiO 3 substrates. Data were collected by using a pulsed-current technique in a four-probe arrangement, allowing to extend the current-voltage characteristics to high supercritical current densities (up to 24 MA cm -2) and high electric fields (more than 20 V/cm), in the superconducting state at temperatures between 30 and 80 K. The electric measurements were performed on tracks perpendicular to the vicinal step direction, such that the current crossed between ab planes, under magnetic field rotated in the plane defined by the crystallographic c axis and the current density. At magnetic field orientation parallel to the cuprate layers, evidence for the sliding motion along the ab planes (vortex channeling) was found. The signature of vortex channeling appeared to get enhanced with increasing electric field, due to the peculiar depinning features in the kinked vortex range. They give rise to a current-voltage characteristics steeper than in the more off-plane rectilinear vortex orientations, in the electric field range below approximately 1 V/cm. Roughly above this value, the high vortex channeling velocities (up to 8.6 km/s) could be ascribed to the flux flow, although the signature of ohmic transport appeared to be altered by unavoidable macroscopic self-heating and hot-electron-like effects. © 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The magnitude and frequency of vertical fluctuations of the top of an axisymmetric miscible Boussinesq fountain forms the focus of this work. We present measurements of these quantities for saline-aqueous fountains in uniform quiescent surroundings. Our results span source Froude numbers 0.3 ≤ Fr 0 ≤ 40 and, thereby, encompass very weak, weak, intermediate and forced classes of fountain. We identify distinct scalings, based on known quantities at the fountain source, for the frequency of fountain height fluctuations which collapse our data within bands of Fr0. Notably, our scalings reveal that the (dimensionless) frequency takes a constant value within each band. These results highlight characteristic time scales for the fluctuations which we decompose into a single, physically apparent, length scale and velocity scale within each band. Moreover, within one particular band, spanning source Froude numbers towards the lower end of the full range considered, we identify unexpectedly long-period fluctuations indicating a near balance of inertia and (opposing) buoyancy at the source. Our analysis identifies four distinct classes of fluctuation behaviour (four bands of Fr 0) and this classification matches well with existing classifications of fountains based on rise heights. As such, we show that an analysis of the behaviour of the fountain top alone, rather than the entire fountain, provides an alternative approach to classifying fountains. The similarity of classifications based on the two different methods confirms that the boundaries between classes mark tangible changes in the physics of fountains. For high Fr0 we show that the dominant fluctuations occur at the scale of the largest eddies which can be contained within the fountain near its top. Extending this, we develop a Strouhal number, Strtop, based on experimental measures of the fountain top, defined such that Strtop = 1 would suggest the dominant fluctuations are caused by a continual cycle of eddies forming and collapsing at this largest physical scale. For high- Fr 0 fountains we find Strtop ≈ 0. 9. © 2013 Cambridge University Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The self-excited global instability mechanisms existing in flat-plate laminar separation bubbles are studied here, in order to shed light on the causes of unsteadiness and three- dimensionality of unforced, nominally two-dimensional separated flows. The presence of two known linear global mechanisms, namely an oscillator behavior driven by local regions of absolute inflectional instability and a centrifugal instability giving rise to a steady three- dimensionalization of the bubble, is studied in a series of model separation bubbles. Present results indicate that absolute instability, and consequently a global oscillator behavior, does not exist for two-dimensional bubbles with a peak reversed-flow velocity below 12% of the free-stream velocity. However, the three-dimensional instability becomes active for recirculation levels as low as urev ≈ 7%. These findings suggest a route to the three-dimensionality and unsteadiness observed in experiments and simulations substantially different from that usually found in the literature, in which two-dimensional vortex shedding is followed by three-dimensionalization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A three-dimensional analytical solution of the microheater temperature based on heat diffusion equation is developed and compared with experimental results. Dimensionless parameters are introduced to analyze the temperature rise time and the distribution under steady state. To study the microheater temperatures before bubble nucleation, a set of working fluids and microheaters are considered. It is shown that the dimensionless time xi(-)(0) required for the temperature rise from room to 95% of the steady state temperature is about 75, not dependent on working fluids and microheaters. Heat transfer to the surrounding liquid is mainly caused by conduction, not by convection and radiation mechanisms. The microheater length affects the surface temperature uniformity, while its width influences the steady temperatures significantly, yielding the transition from heterogeneous to homogeneous nucleation mechanism from square microheaters to narrow line microheaters. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Condensation of steam in a single microchannel, silicon test section was investigated visually at low flow rates. The microchannel was rectangular in cross-section with a depth of 30 pm, a width of 800 mu m and a length of 5.0 mm, covered with a Pyrex glass to allow for visualization of the bubble formation process. By varying the cooling rate during condensation of the saturated water vapor, it was possible to control the shape, size and frequency of the bubbles formed. At low cooling rates using only natural air convection from the ambient environment, the flow pattern in the microchannel consisted of a nearly stable elongated bubble attached upstream (near the inlet) that pinched off into a train of elliptical bubbles downstream of the elongated bubble. It was observed that these elliptical bubbles were emitted periodically from the tip of the elongated bubble at a high frequency, with smaller size than the channel width. The shape of the emitted bubbles underwent modifications shortly after their generation until finally becoming a stable vertical ellipse, maintaining its shape and size as it flowed downstream at a constant speed. These periodically emitted elliptical bubbles thus formed an ordered bubble sequence (train). At higher cooling rates using chilled water in a copper heat sink attached to the test section, the bubble formation frequency increased significantly while the bubble size decreased, all the while forming a perfect bubble train flowing downstream of the microchannel. The emitted bubbles in this case immediately formed into a circular shape without any further modification after their separation from the elongated bubble upstream. The present study suggests that a method for controlling the size and generation frequency of microbubbles could be so developed, which may be of interest for microfluidic applications. The breakup of the elongated bubble is caused by the large Weber number at the tip of the elongated bubble induced by the maximum vapor velocity at the centerline of the microchannel inside the elongated bubble and the smaller surface tension force of water at the tip of the elongated bubble.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gas hydrate formation experiments were performed using methane in the presence of tetrahydrofuran (THF) in aqueous solution in a transparent bubble column in which a single pipe or a sintered plate was used to produce bubbles. The mole fraction of THF in aqueous solution was fixed at 6%. The hydrate formation kinetic behaviors on the surface of the rising bubble, the mechanical stability of hydrate shell formed on the surface of the bubble, the interactions among the bubbles with hydrate shell were observed and investigated morphologically. The rise velocities of individual bubbles with hydrate shells of different thickness and the consumption rates of methane gas were measured. A kinetic model was developed to correlate the experimentally measured gas consumption rate data. It was found that the hydrate formation rate on the surface of the moving bubble was high, but the formed hydrate shell was not very easy to be broken up. The bubbles with hydrate shells tended to agglomerate rather than merge into bigger bubble. This kind of characteristic of hydrate shell hindered the further formation of hydrate and led to the lower consumption rate of methane. The consumption rate of methane was found to increase with the decrease of temperature or increase of pressure. The increase of gas flux led to a linear increase in consumption rate of methane. It was demonstrated that the developed kinetic model could be used to correlate the consumption rate satisfyingly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The motion of a single bubble rising freely in quiescent non-Newtonian viscous fluids was investigated experimentally and computationally. The non-Newtonian effects in the flow of viscous inelastic fluids are modeled by the Carreau theological model. An improved level set approach for computing the incompressible two-phase flow with deformable free interface is used. The control volume formulation with the SIMPLEC algorithm incorporated is used to solve the governing equations on a staggered Eulerian grid. The simulation results demonstrate that the algorithm is robust for shear-thinning liquids with large density (rho(1)/rho(g) up to 10(3)) and high viscosity (eta(1)/eta(g) up to 10(4)). The comparison of the experimental measurements of terminal bubble shape and velocity with the computational results is satisfactory. It is shown that the local change in viscosity around a bubble greatly depends on the bubble shape and the zero-shear viscosity of non-Newtonian shear-thinning liquids. The shear-rate distribution and velocity fields are used to elucidate the formation of a region of large viscosity at the rear of a bubble as a result of the rather stagnant flow behind the bubble. The numerical results provide the basis for further investigations, such as the numerical simulation of viscoelastic fluids. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By modelling the average activity of large neuronal populations, continuum mean field models (MFMs) have become an increasingly important theoretical tool for understanding the emergent activity of cortical tissue. In order to be computationally tractable, long-range propagation of activity in MFMs is often approximated with partial differential equations (PDEs). However, PDE approximations in current use correspond to underlying axonal velocity distributions incompatible with experimental measurements. In order to rectify this deficiency, we here introduce novel propagation PDEs that give rise to smooth unimodal distributions of axonal conduction velocities. We also argue that velocities estimated from fibre diameters in slice and from latency measurements, respectively, relate quite differently to such distributions, a significant point for any phenomenological description. Our PDEs are then successfully fit to fibre diameter data from human corpus callosum and rat subcortical white matter. This allows for the first time to simulate long-range conduction in the mammalian brain with realistic, convenient PDEs. Furthermore, the obtained results suggest that the propagation of activity in rat and human differs significantly beyond mere scaling. The dynamical consequences of our new formulation are investigated in the context of a well known neural field model. On the basis of Turing instability analyses, we conclude that pattern formation is more easily initiated using our more realistic propagator. By increasing characteristic conduction velocities, a smooth transition can occur from self-sustaining bulk oscillations to travelling waves of various wavelengths, which may influence axonal growth during development. Our analytic results are also corroborated numerically using simulations on a large spatial grid. Thus we provide here a comprehensive analysis of empirically constrained activity propagation in the context of MFMs, which will allow more realistic studies of mammalian brain activity in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The numerical solution of the incompressible Navier-Stokes equations offers an alternative to experimental analysis of fluid-structure interaction (FSI). We would save a lot of time and effort and help cut back on costs, if we are able to accurately model systems by these numerical solutions. These advantages are even more obvious when considering huge structures like bridges, high rise buildings or even wind turbine blades with diameters as large as 200 meters. The modeling of such processes, however, involves complex multiphysics problems along with complex geometries. This thesis focuses on a novel vorticity-velocity formulation called the Kinematic Laplacian Equation (KLE) to solve the incompressible Navier-stokes equations for such FSI problems. This scheme allows for the implementation of robust adaptive ordinary differential equations (ODE) time integration schemes, allowing us to tackle each problem as a separate module. The current algortihm for the KLE uses an unstructured quadrilateral mesh, formed by dividing each triangle of an unstructured triangular mesh into three quadrilaterals for spatial discretization. This research deals with determining a suitable measure of mesh quality based on the physics of the problems being tackled. This is followed by exploring methods to improve the quality of quadrilateral elements obtained from the triangles and thereby improving the overall mesh quality. A series of numerical experiments were designed and conducted for this purpose and the results obtained were tested on different geometries with varying degrees of mesh density.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The numerical solution of the incompressible Navier-Stokes Equations offers an effective alternative to the experimental analysis of Fluid-Structure interaction i.e. dynamical coupling between a fluid and a solid which otherwise is very complex, time consuming and very expensive. To have a method which can accurately model these types of mechanical systems by numerical solutions becomes a great option, since these advantages are even more obvious when considering huge structures like bridges, high rise buildings, or even wind turbine blades with diameters as large as 200 meters. The modeling of such processes, however, involves complex multiphysics problems along with complex geometries. This thesis focuses on a novel vorticity-velocity formulation called the KLE to solve the incompressible Navier-stokes equations for such FSI problems. This scheme allows for the implementation of robust adaptive ODE time integration schemes and thus allows us to tackle the various multiphysics problems as separate modules. The current algorithm for KLE employs a structured or unstructured mesh for spatial discretization and it allows the use of a self-adaptive or fixed time step ODE solver while dealing with unsteady problems. This research deals with the analysis of the effects of the Courant-Friedrichs-Lewy (CFL) condition for KLE when applied to unsteady Stoke’s problem. The objective is to conduct a numerical analysis for stability and, hence, for convergence. Our results confirmthat the time step ∆t is constrained by the CFL-like condition ∆t ≤ const. hα, where h denotes the variable that represents spatial discretization.