329 resultados para Breakage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Particle breakage due to fluid flow through various geometries can have a major influence on the performance of particle/fluid processes and on the product quality characteristics of particle/fluid products. In this study, whey protein precipitate dispersions were used as a case study to investigate the effect of flow intensity and exposure time on the breakage of these precipitate particles. Computational fluid dynamic (CFD) simulations were performed to evaluate the turbulent eddy dissipation rate (TED) and associated exposure time along various flow geometries. The focus of this work is on the predictive modelling of particle breakage in particle/fluid systems. A number of breakage models were developed to relate TED and exposure time to particle breakage. The suitability of these breakage models was evaluated for their ability to predict the experimentally determined breakage of the whey protein precipitate particles. A "power-law threshold" breakage model was found to provide a satisfactory capability for predicting the breakage of the whey protein precipitate particles. The whey protein precipitate dispersions were propelled through a number of different geometries such as bends, tees and elbows, and the model accurately predicted the mean particle size attained after flow through these geometries. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whey proteins may be fractionated by isoelectric precipitation followed by centrifugal recovery of the precipitate phase. Transport and processing of protein precipitates may alter the precipitate particle properties, which may affect how they behave in subsequent processes. For example, the transport of precipitate solution through pumps, pipes and valves and into a centrifugal separator may cause changes in particle size and density, which may affect the performance of the separator. This work investigates the effect of fluid flow intensity, flow geometry and exposure time on the breakage of whey protein precipitates: Computational fluid dynamics (CFD) was used to quantify the flow intensity in different geometries. Flow geometry can have a critical impact on particle breakage. Sharp geometrical transitions induce large increases in turbulence that can result in substantial particle breakage. As protein precipitate particles break, they tend to form denser more compact structures. The reduction in particle size and increase in compaction is due to breakage. This makes the particles become more resistant to further breakage as particle compactness increases. The effect of flow intensity on particle breakage is coupled to exposure time, with greater exposure time producing more breakage. However, it is expected that the particles will attain an equilibrium particle size and density after prolonged exposure in a constant flow field where no further breakage will occur with exposure time. © 2005 Institution of Chemical Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Qualitative discrimination criteria are employed commonly to distinguish cultural shell middens from natural shell deposits. Quantitative discrimination criteria remain less developed beyond an assumption that natural shell beds tend to contain a wider range of shell sizes compared to cultural shell middens. This study further tests this assumption and provides the first comparative quantitative analysis of shell sizes from cultural middens, bird middens, and beach shell beds. Size distributions of opercula of the marine gastropod Turbo undulatus within two modern Pacific Gull (Larus pacificus) middens are compared with two Aboriginal middens (early and late Holocene) and two modern beach deposits from southeast Australia. Results reveal statistically significant differences between bird middens and other types of shell deposits, and that opercula size distributions are useful to distinguish Aboriginal middens from bird middens but not from beach deposits. Supplementary qualitative analysis of taphonomic alteration of opercula reveal similar opercula breakage patterns in human and bird middens, and further support previously recognised criteria to distinguished beach deposits (water rolling and bioerosion) and human middens (burning). Although Pacific Gulls are geographically restricted to southern Australia, the known capacity of gulls (Larus spp.) in other coastal contexts around the world to accumulate shell deposits indicates the broader methodological relevance of our study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Growth rods are commonly used for the treatment of scoliosis in the immature spine. Many variations have been proposed but breakage of implants is a common problem. Growth rod insertion commonly involves large exposures at initial insertion followed by multiple smaller procedures for lengthening. We present our early experiences using a percutaneous technique of insertion of a new titanium mobile bearing implant (Medtronic Inc). The implant allows some rotatory motion in the middle of the construct thus reducing construct stresses and thus possibly reducing rod breakage risk. Based on this small initial series with 12 months follow-up, percutaneous insertion of growth rods using the new implant is a safe and reliable technique although the infection rate in our sample was of note. This may be related to the titanium wear and inflammation seen in the soft tissues at time of operation and visualised on histology. No implants have required removal due to infection, and all infections were treated with debridement at next lengthening and suppressive antibiotics. Propionibacterium is one of the commonest infections seen with spinal implants and sometimes does not respond to simple antibiotic suppression. The technique allows preservation of the soft tissues until definitive fusion is needed and may lead to a decrease in hospital stay. The implant is low profile and seems to offer advantages over other systems on the market. Further follow up is needed to look at longer term outcomes with this new implant type.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adolescent idiopathic scoliosis (AIS) is the most common form of spinal deformity in paediatrics, prevalent in approximately 2-4% of the general population. While it is a complex three-dimensional deformity, it is clinically characterised by an abnormal lateral curvature of the spine. The treatment for severe deformity is surgical correction with the use of structural implants. Anterior single rod correction employs a solid rod connected to the anterior spine via vertebral body screws. Correction is achieved by applying compression between adjacent vertebral body screws, before locking each screw onto the rod. Biomechanical complication rates have been reported as high as 20.8%, and include rod breakage, screw pull-out and loss of correction. Currently, the corrective forces applied to the spine are unknown. These forces are important variables to consider in understanding the biomechanics of scoliosis correction. The purpose of this study was to measure these forces intra-operatively during anterior single rod AIS correction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

hSSB1 is a recently discovered single-stranded DNA binding protein that is essential for efficient repair of DNA double-strand breaks (DSBs) by the homologous recombination pathway. hSSB1 is required for the efficient recruitment of the MRN complex to sites of DSBs and for the efficient initiation of ATM dependent signalling. Here we explore the interplay between hSSB1 and MRN. We demonstrate that hSSB1 binds directly to NBS1, a component of the MRN complex, in a DNA damage independent manner. Consistent with the direct interaction, we observe that hSSB1 greatly stimulates the endo-nuclease activity of the MRN complex, a process that requires the C-terminal tail of hSSB1. Interestingly, analysis of two point mutations in NBS1, associated with Nijmegen breakage syndrome, revealed weaker binding to hSSB1, suggesting a possible disease mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis examines the role of mobile telephony in rural communities in Papua New Guinea (PNG). It is a threshold study which reports on research conducted in the earliest stages of mobile phone adoption in these areas. It explores the ways in which this new technology changes people’s lives, social structures and relationships. The research focuses on non-urban communities, which previously had little or no access to modern communication technologies, but which are in some cases still using traditional forms of communication such as drums. It has found that the introduction of mobile telecommunications has generally been viewed positively, although several negative concerns have been strongly felt. Specific benefits related to enhanced communication with relatives and friends living away from home villages, and use of the technology in time-critical emergencies or crises. Difficulties have arisen with respect to the cost of owning and operating a handset, as well as financial and logistical challenges when recharging handset batteries, particularly in areas with no mains electricity supply. Perceived damaging effects of mobile phone access related to sex, crime and pornography. The changes taking place are described through a social lens, by foregrounding the perceptions of villagers. The perspectives of key informants, such as telecommunication company managers, are also discussed. Employing the technique of triangulation (using different methods and sources) has helped to validate the findings of the research project. The sources constantly overlap and agree on the main themes, such as those outlined above. PNG is a developing country which performs poorly on a wide range of development indicators. A large majority of the people live outside of the major towns and cities. It is therefore worthwhile investigating the introduction of mobile phone technology in rural areas. These areas often have poor access to services, including transport, health, education and banking. Until 2007, communities in such regions fell outside of mobile phone coverage areas. In the case of all ten villages discussed in this thesis, there has never been any landline telephone infrastructure available. Therefore, this research on mobile phones is in effect documenting the first ever access to any kind of phone in these communities. This research makes a unique contribution to knowledge about the role of communication in PNG, and has implications for policy, practice and theory. In the policy arena, the thesis aids understanding of the impact which communication sector competition and regulation can have on rural and relatively isolated communities. There are three practical problems which have emerged from the research: cost, battery recharging difficulties and breakage are all major obstacles to uptake and use of mobile telephony in rural communities. Efforts to reduce usage costs, enable easier recharging, and design more robust handsets would allow for increased utilisation of mobile phones for a range of purposes. With respect to the realm of theory, this research sits amongst the most recent scholarship in the mobile phone field, located within the broader communication theory area. It recommends cautionary reading of any literature which suggests that mobile phones will reduce poverty and increase incomes in poor, rural communities in developing countries. Nonetheless, the present research adds weight to mobile phone studies which suggest that the primary advantages of mobile phones in such settings are for the satisfactions of communication of itself, and for social interaction among loved ones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Road safety barriers are used to redirect traffic at roadside work-zones. When filled with water, these barriers are able to withstand low to moderate impact speeds up to 50kmh-1. Despite this feature, Portable Water-filled barriers (PWFB) face challenges such as large lateral displacements, tearing and breakage during impact; especially at higher speeds. This study explores the use of composite action to enhance the crashworthiness of PWFBs and enable their usage at higher speeds. Initially, energy absorption capability of water in PWFB is investigated. Then, composite action of the PWFB with the introduction of steel frame is considered to evaluate its enhanced impact performance. Findings of the study show that the initial height of the impact must be lower than the free surface level of water in a PWFB in order for the water to provide significant crash energy absorption. In general, an impact of a road barrier with 80% filled is a good estimation. Furthermore, the addition of a composite structure greatly reduces the probability of tearing by decreasing the strain and impact energy transferred to the shell container. This allows the water to remain longer in the barrier to absorb energy via inertial displacements and sloshing response. Information from this research will aid in the design of new generation roadside safety structures aimed to increase safety in modern roadways.