943 resultados para Branch and bounds
Resumo:
The increasing emphasis on mass customization, shortened product lifecycles, synchronized supply chains, when coupled with advances in information system, is driving most firms towards make-to-order (MTO) operations. Increasing global competition, lower profit margins, and higher customer expectations force the MTO firms to plan its capacity by managing the effective demand. The goal of this research was to maximize the operational profits of a make-to-order operation by selectively accepting incoming customer orders and simultaneously allocating capacity for them at the sales stage. For integrating the two decisions, a Mixed-Integer Linear Program (MILP) was formulated which can aid an operations manager in an MTO environment to select a set of potential customer orders such that all the selected orders are fulfilled by their deadline. The proposed model combines order acceptance/rejection decision with detailed scheduling. Experiments with the formulation indicate that for larger problem sizes, the computational time required to determine an optimal solution is prohibitive. This formulation inherits a block diagonal structure, and can be decomposed into one or more sub-problems (i.e. one sub-problem for each customer order) and a master problem by applying Dantzig-Wolfe’s decomposition principles. To efficiently solve the original MILP, an exact Branch-and-Price algorithm was successfully developed. Various approximation algorithms were developed to further improve the runtime. Experiments conducted unequivocally show the efficiency of these algorithms compared to a commercial optimization solver. The existing literature addresses the static order acceptance problem for a single machine environment having regular capacity with an objective to maximize profits and a penalty for tardiness. This dissertation has solved the order acceptance and capacity planning problem for a job shop environment with multiple resources. Both regular and overtime resources is considered. The Branch-and-Price algorithms developed in this dissertation are faster and can be incorporated in a decision support system which can be used on a daily basis to help make intelligent decisions in a MTO operation.
Resumo:
Supply chain operations directly affect service levels. Decision on amendment of facilities is generally decided based on overall cost, leaving out the efficiency of each unit. Decomposing the supply chain superstructure, efficiency analysis of the facilities (warehouses or distribution centers) that serve customers can be easily implemented. With the proposed algorithm, the selection of a facility is based on service level maximization and not just cost minimization as this analysis filters all the feasible solutions utilizing Data Envelopment Analysis (DEA) technique. Through multiple iterations, solutions are filtered via DEA and only the efficient ones are selected leading to cost minimization. In this work, the problem of optimal supply chain networks design is addressed based on a DEA based algorithm. A Branch and Efficiency (B&E) algorithm is deployed for the solution of this problem. Based on this DEA approach, each solution (potentially installed warehouse, plant etc) is treated as a Decision Making Unit, thus is characterized by inputs and outputs. The algorithm through additional constraints named “efficiency cuts”, selects only efficient solutions providing better objective function values. The applicability of the proposed algorithm is demonstrated through illustrative examples.
Resumo:
De nombreux problèmes liés aux domaines du transport, des télécommunications et de la logistique peuvent être modélisés comme des problèmes de conception de réseaux. Le problème classique consiste à transporter un flot (données, personnes, produits, etc.) sur un réseau sous un certain nombre de contraintes dans le but de satisfaire la demande, tout en minimisant les coûts. Dans ce mémoire, on se propose d'étudier le problème de conception de réseaux avec coûts fixes, capacités et un seul produit, qu'on transforme en un problème équivalent à plusieurs produits de façon à améliorer la valeur de la borne inférieure provenant de la relaxation continue du modèle. La méthode que nous présentons pour la résolution de ce problème est une méthode exacte de branch-and-price-and-cut avec une condition d'arrêt, dans laquelle nous exploitons à la fois la méthode de génération de colonnes, la méthode de génération de coupes et l'algorithme de branch-and-bound. Ces méthodes figurent parmi les techniques les plus utilisées en programmation linéaire en nombres entiers. Nous testons notre méthode sur deux groupes d'instances de tailles différentes (gran-des et très grandes), et nous la comparons avec les résultats donnés par CPLEX, un des meilleurs logiciels permettant de résoudre des problèmes d'optimisation mathématique, ainsi qu’avec une méthode de branch-and-cut. Il s'est avéré que notre méthode est prometteuse et peut donner de bons résultats, en particulier pour les instances de très grandes tailles.
Resumo:
De nombreux problèmes liés aux domaines du transport, des télécommunications et de la logistique peuvent être modélisés comme des problèmes de conception de réseaux. Le problème classique consiste à transporter un flot (données, personnes, produits, etc.) sur un réseau sous un certain nombre de contraintes dans le but de satisfaire la demande, tout en minimisant les coûts. Dans ce mémoire, on se propose d'étudier le problème de conception de réseaux avec coûts fixes, capacités et un seul produit, qu'on transforme en un problème équivalent à plusieurs produits de façon à améliorer la valeur de la borne inférieure provenant de la relaxation continue du modèle. La méthode que nous présentons pour la résolution de ce problème est une méthode exacte de branch-and-price-and-cut avec une condition d'arrêt, dans laquelle nous exploitons à la fois la méthode de génération de colonnes, la méthode de génération de coupes et l'algorithme de branch-and-bound. Ces méthodes figurent parmi les techniques les plus utilisées en programmation linéaire en nombres entiers. Nous testons notre méthode sur deux groupes d'instances de tailles différentes (gran-des et très grandes), et nous la comparons avec les résultats donnés par CPLEX, un des meilleurs logiciels permettant de résoudre des problèmes d'optimisation mathématique, ainsi qu’avec une méthode de branch-and-cut. Il s'est avéré que notre méthode est prometteuse et peut donner de bons résultats, en particulier pour les instances de très grandes tailles.
Resumo:
The horticultural sector has become an increasingly important sector of food production, for which greenhouse climate control plays a vital role in improving its sustainability. One of the methods to control the greenhouse climate is Model Predictive Control, which can be optimized through a branch and bound algorithm. The application of the algorithm in literature is examined and analyzed through small examples, and later extended to greenhouse climate simulation. A comparison is made of various alternative objective functions available in literature. Subsequently, a modidified version of the B&B algorithm is presented, which reduces the number of node evaluations required for optimization. Finally, three alternative algorithms are developed and compared to consider the optimization problem from a discrete to a continuous control space.
Resumo:
This paper proposes a new strategy to reduce the combinatorial search space of a mixed integer linear programming (MILP) problem. The construction phase of greedy randomized adaptive search procedure (GRASP-CP) is employed to reduce the domain of the integer variables of the transportation model of the transmission expansion planning (TM-TEP) problem. This problem is a MILP and very difficult to solve specially for large scale systems. The branch and bound (BB) algorithm is used to solve the problem in both full and the reduced search space. The proposed method might be useful to reduce the search space of those kinds of MILP problems that a fast heuristic algorithm is available for finding local optimal solutions. The obtained results using some real test systems show the efficiency of the proposed method. © 2012 Springer-Verlag.
Resumo:
We present a metaheuristic approach which combines constructive heuristics and local searches based on sampling with path relinking. Its effectiveness is demonstrated by an application to the problem of allocating switches in electrical distribution networks to improve their reliability. Our approach also treats the service restoration problem, which has to be solved as a subproblem, to evaluate the reliability benefit of a given switch allocation proposal. Comparisons with other metaheuristics and with a branch-and-bound procedure evaluate its performance. © 2012 Published by Elsevier Ltd.
Resumo:
A measurement of the inelastic component of the key astrophysical resonance in the 14O(α,p)17F reaction for burning and breakout from hot carbon-nitrogen-oxygen (CNO) cycles is reported. The inelastic component is found to be comparable to the ground-state branch and will enhance the 14O(α,p)17F reaction rate. The current results for the reaction rate confirm that the 14O(α,p)17F reaction is unlikely to contribute substantially to burning and breakout from the CNO cycles under novae conditions. The reaction can, however, contribute strongly to the breakout from the hot CNO cycles under the more extreme conditions found in x-ray bursters.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This thesis deals with an investigation of Decomposition and Reformulation to solve Integer Linear Programming Problems. This method is often a very successful approach computationally, producing high-quality solutions for well-structured combinatorial optimization problems like vehicle routing, cutting stock, p-median and generalized assignment . However, until now the method has always been tailored to the specific problem under investigation. The principal innovation of this thesis is to develop a new framework able to apply this concept to a generic MIP problem. The new approach is thus capable of auto-decomposition and autoreformulation of the input problem applicable as a resolving black box algorithm and works as a complement and alternative to the normal resolving techniques. The idea of Decomposing and Reformulating (usually called in literature Dantzig and Wolfe Decomposition DWD) is, given a MIP, to convexify one (or more) subset(s) of constraints (slaves) and working on the partially convexified polyhedron(s) obtained. For a given MIP several decompositions can be defined depending from what sets of constraints we want to convexify. In this thesis we mainly reformulate MIPs using two sets of variables: the original variables and the extended variables (representing the exponential extreme points). The master constraints consist of the original constraints not included in any slaves plus the convexity constraint(s) and the linking constraints(ensuring that each original variable can be viewed as linear combination of extreme points of the slaves). The solution procedure consists of iteratively solving the reformulated MIP (master) and checking (pricing) if a variable of reduced costs exists, and in which case adding it to the master and solving it again (columns generation), or otherwise stopping the procedure. The advantage of using DWD is that the reformulated relaxation gives bounds stronger than the original LP relaxation, in addition it can be incorporated in a Branch and bound scheme (Branch and Price) in order to solve the problem to optimality. If the computational time for the pricing problem is reasonable this leads in practice to a stronger speed up in the solution time, specially when the convex hull of the slaves is easy to compute, usually because of its special structure.
Resumo:
The use of linear programming in various areas has increased with the significant improvement of specialized solvers. Linear programs are used as such to model practical problems, or as subroutines in algorithms such as formal proofs or branch-and-cut frameworks. In many situations a certified answer is needed, for example the guarantee that the linear program is feasible or infeasible, or a provably safe bound on its objective value. Most of the available solvers work with floating-point arithmetic and are thus subject to its shortcomings such as rounding errors or underflow, therefore they can deliver incorrect answers. While adequate for some applications, this is unacceptable for critical applications like flight controlling or nuclear plant management due to the potential catastrophic consequences. We propose a method that gives a certified answer whether a linear program is feasible or infeasible, or returns unknown'. The advantage of our method is that it is reasonably fast and rarely answers unknown'. It works by computing a safe solution that is in some way the best possible in the relative interior of the feasible set. To certify the relative interior, we employ exact arithmetic, whose use is nevertheless limited in general to critical places, allowing us to rnremain computationally efficient. Moreover, when certain conditions are fulfilled, our method is able to deliver a provable bound on the objective value of the linear program. We test our algorithm on typical benchmark sets and obtain higher rates of success compared to previous approaches for this problem, while keeping the running times acceptably small. The computed objective value bounds are in most of the cases very close to the known exact objective values. We prove the usability of the method we developed by additionally employing a variant of it in a different scenario, namely to improve the results of a Satisfiability Modulo Theories solver. Our method is used as a black box in the nodes of a branch-and-bound tree to implement conflict learning based on the certificate of infeasibility for linear programs consisting of subsets of linear constraints. The generated conflict clauses are in general small and give good rnprospects for reducing the search space. Compared to other methods we obtain significant improvements in the running time, especially on the large instances.
Resumo:
Background—Pathology studies on fatal cases of very late stent thrombosis have described incomplete neointimal coverage as common substrate, in some cases appearing at side-branch struts. Intravascular ultrasound studies have described the association between incomplete stent apposition (ISA) and stent thrombosis, but the mechanism explaining this association remains unclear. Whether the neointimal coverage of nonapposed side-branch and ISA struts is delayed with respect to well-apposed struts is unknown. Methods and Results—Optical coherence tomography studies from 178 stents implanted in 99 patients from 2 randomized trials were analyzed at 9 to 13 months of follow-up. The sample included 38 sirolimus-eluting, 33 biolimus-eluting, 57 everolimus-eluting, and 50 zotarolimus-eluting stents. Optical coherence tomography coverage of nonapposed side-branch and ISA struts was compared with well-apposed struts of the same stent by statistical pooled analysis with a random-effects model. A total of 34 120 struts were analyzed. The risk ratio of delayed coverage was 9.00 (95% confidence interval, 6.58 to 12.32) for nonapposed side-branch versus well-apposed struts, 9.10 (95% confidence interval, 7.34 to 11.28) for ISA versus well-apposed struts, and 1.73 (95% confidence interval, 1.34 to 2.23) for ISA versus nonapposed side-branch struts. Heterogeneity of the effect was observed in the comparison of ISA versus well-apposed struts (H=1.27; I2=38.40) but not in the other comparisons. Conclusions—Coverage of ISA and nonapposed side-branch struts is delayed with respect to well-apposed struts in drug-eluting stents, as assessed by optical coherence tomography.
Resumo:
Process systems design, operation and synthesis problems under uncertainty can readily be formulated as two-stage stochastic mixed-integer linear and nonlinear (nonconvex) programming (MILP and MINLP) problems. These problems, with a scenario based formulation, lead to large-scale MILPs/MINLPs that are well structured. The first part of the thesis proposes a new finitely convergent cross decomposition method (CD), where Benders decomposition (BD) and Dantzig-Wolfe decomposition (DWD) are combined in a unified framework to improve the solution of scenario based two-stage stochastic MILPs. This method alternates between DWD iterations and BD iterations, where DWD restricted master problems and BD primal problems yield a sequence of upper bounds, and BD relaxed master problems yield a sequence of lower bounds. A variant of CD, which includes multiple columns per iteration of DW restricted master problem and multiple cuts per iteration of BD relaxed master problem, called multicolumn-multicut CD is then developed to improve solution time. Finally, an extended cross decomposition method (ECD) for solving two-stage stochastic programs with risk constraints is proposed. In this approach, a CD approach at the first level and DWD at a second level is used to solve the original problem to optimality. ECD has a computational advantage over a bilevel decomposition strategy or solving the monolith problem using an MILP solver. The second part of the thesis develops a joint decomposition approach combining Lagrangian decomposition (LD) and generalized Benders decomposition (GBD), to efficiently solve stochastic mixed-integer nonlinear nonconvex programming problems to global optimality, without the need for explicit branch and bound search. In this approach, LD subproblems and GBD subproblems are systematically solved in a single framework. The relaxed master problem obtained from the reformulation of the original problem, is solved only when necessary. A convexification of the relaxed master problem and a domain reduction procedure are integrated into the decomposition framework to improve solution efficiency. Using case studies taken from renewable resource and fossil-fuel based application in process systems engineering, it can be seen that these novel decomposition approaches have significant benefit over classical decomposition methods and state-of-the-art MILP/MINLP global optimization solvers.
Resumo:
As the Australian Journal of Music Therapy celebrates its 20th year of publication, it is evident that the profession of music therapy in Australia, has made substantial progress over these last 20 years. Jobs are regularly advertised on the website, there is a greater public awareness of what music therapy is, there are government recognised salary awards applicable in several states of the country, working conditions have generally improved, and many Australian music therapists are recognised on the international stage as leaders in their field of expertise. You can even go to a party and tell someone you are a music therapist and there is a good chance they will say 'oh yeah, I know someone who does that at the hospital / school / community centre / nursing home' instead of saying 'oh, so like, a what?'. Despite the impressive leaps and bounds that have been made, and the success of many programs in Australia to date, there is still a great deal of room for improvement. What are the critical issues ahead for the development of music therapy in Australia? In particular, how do music therapists develop going forward and secure funding for clinical initiatives? In reflecting on this question, this article identifies two key areas, amongst the many, that can be addressed by music therapists over the next 20 years: funding and employment conditions. Examples from the national early intervention music therapy program 'Sing and Grow' are used to illustrate the potential impact of addressing these two issues on the positive development of the profession into the future.
Resumo:
This paper considers the problem of reconstructing the motion of a 3D articulated tree from 2D point correspondences subject to some temporal prior. Hitherto, smooth motion has been encouraged using a trajectory basis, yielding a hard combinatorial problem with time complexity growing exponentially in the number of frames. Branch and bound strategies have previously attempted to curb this complexity whilst maintaining global optimality. However, they provide no guarantee of being more efficient than exhaustive search. Inspired by recent work which reconstructs general trajectories using compact high-pass filters, we develop a dynamic programming approach which scales linearly in the number of frames, leveraging the intrinsically local nature of filter interactions. Extension to affine projection enables reconstruction without estimating cameras.