961 resultados para Brake fluids.
Resumo:
A study of the magnetohydrodynamic system in which a nonmagnetized fluid in a gravitational field is surrounded by a fluid carrying a vertical magnetic field is presented. It is pointed out that this study can throw some light on the fine-structural features of a sunspot. The equilibrium configuration of the field-free fluid is a tapering column ending at an apex. The regions away form the apex can be studied by the slender flux tube approximation. A scheme developed to treat the apex indicates that, just below the apex, the radius of the tapering column opens up with a 3/2 power dependence on the depth below the apex. If the internal pressure of the field-free fluid is increased, the apex rises, and a static equilibrium may not be possible beyond a limit if the magnetic pressure drops quickly above a certain height. The nature of steady-flow solutions beyond this limit is investigated. Under conditions inside a sunspot, a column of field-free gas is found to rise with a velocity of about 100 km/hr. If umbral dots and penumbral grains are interpreted as regions where the field-free gas ultimately emerges, a very natural explanation of most of their observed properties is obtained.
A Legendre spectral element model for sloshing and acoustic analysis in nearly incompressible fluids
Resumo:
A new spectral finite element formulation is presented for modeling the sloshing and the acoustic waves in nearly incompressible fluids. The formulation makes use of the Legendre polynomials in deriving the finite element interpolation shape functions in the Lagrangian frame of reference. The formulated element uses Gauss-Lobatto-Legendre quadrature scheme for integrating the volumetric stiffness and the mass matrices while the conventional Gauss-Legendre quadrature scheme is used on the rotational stiffness matrix to completely eliminate the zero energy modes, which are normally associated with the Lagrangian FE formulation. The numerical performance of the spectral element formulated here is examined by doing the inf-sup test oil a standard rectangular rigid tank partially filled with liquid The eigenvalues obtained from the formulated spectral element are compared with the conventional equally spaced node locations of the h-type Lagrangian finite element and the predicted results show that these spectral elements are more accurate and give superior convergence The efficiency and robustness of the formulated elements are demonstrated by solving few standard problems involving free vibration and dynamic response analysis with undistorted and distorted spectral elements. and the obtained results are compared with available results in the published literature (C) 2009 Elsevier Inc All rights reserved
Resumo:
The transesterification of methyl butyrate, ethyl butyrate and butyl butyrate to geranyl butyrate was investigated in supercritical carbon dioxide. The effect of chain length of the butyrate on the rate of transesterification was investigated. The initial rates followed the trend: ethyl butyrate < butyl butyrate < methyl butyrate. The transesterification of butyl butyrate to geranyl butyrate in various supercritical fluids such as ethylene, methane, ethane was also examined. The initial rate of transesterification of butyl butyrate in different supercritical fluids followed the order: ScCO2 < ScC2H6 < ScC2H4 < ScCH4. The highest initial rate was obtained in supercritical methane and the reasons for this observation were proposed. The Ping-Pong Bi-Bi model with inhibition by both acid and alcohol was used to model the experimental data and determine the kinetics of the reaction. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we have studied the secondary flow induced in a micropolar fluid by the rotation of two concentric spheres about a fixed diameter. The secondary flow exhibits behaviour commonly observed in visco-elastic fluids. In particular we have obtained the expressions for microrotation vector. Numerical results have been obtained for a number of values of relative rotations of the two spheres for a chosen set of values of fluid parameters. The results are presented graphically and compared with the previous investigations.
Resumo:
The micropolar fluids like Newtonian and Non-Newtonian fluids cannot sustain a simple shearing motion, wherein only one component of velocity is present. They exhibit both primary and secondary motions when the boundaries are subject to slow rotations. The primary motion, as in Non-Newtonian fluids, characterized by the equation due to Rivlin-Ericksen, Oldroyd, Walters etc., resembles that of Newtonian fluid for slow steady rotation. We further notice that the micro-rotation becomes identically equal to the vorticity present in the fluid and the condition b) of "Wall vorticity" can alone be satisfied at the boundaries. As regards, the secondary motion, we notice that it can be determined by the above procedure for a special class of fluids, namely that for which j0(n2-n3)=4 n3/l2. Moreover for this class of fluids, the micro-rotation is identical with the vorticity of the fluid everywhere. Also the stream function for the secondary flow is identical with that for the Newtonian fluid with a suitable definition of the Reynolds number. In contrast with the Non-Newtonian fluids, characterized by the equation due to Rivlin-Ericksen, Oldroyd, Walters etc., this class of micropolar fluids does not show separation. This is in conformity with the statement of Condiff and Dahler (3) that in any steady flow, internal spin matches the vorticity everywhere provided that (i) spin boundary conditions are satisfied, (ii) body torques and non-conservative body forces are absent, and (iii) inertial and spin-inertial terms are either negligible or vanish identically.
Resumo:
This paper compares, in a general way, the predictions of the constitutive equations given by Rivlin and Ericksen, Oldroyd, and Walters. Whether we consider the rotational problems in cylindrical co-ordinates or in spherical polar co-ordinates, the effect of the non-Newtonicity on the secondary flows is collected in a single parameterα which can be explicitly expressed in terms of the non-Newtonian parameters that occur in each of the above-mentioned constitutive equations. Thus, for a given value ofα, all the three fluids will have identical secondary flows. It is only through the study of appropriate normal stresses that a Rivlin-Ericksen fluid can be distinguished from the other two fluids which are indistinguishable as long as this non-Newtonian parameter has the same value.
Resumo:
The paper deals with the study of the nature of secondary flow of aRivlin-Ericksen fluid, contained between two concentric spheres, which perform oscillations about a fixed diameter. The steady part of the secondary flow is discussed in detail in the following three cases (i) the outer sphere at rest, the inner oscillating, (ii) the two spheres oscillating with the same angular velocity in the same sense and (iii) the spheres oscillating with the same angular velocity in opposite sense. In a previous paper, a similar problem was discussed for theOldroyd fluids. We find that the secondary flow is strongly dependent on the common frequency of oscillation of the two spheres and on the rotational nature of the motion for the present investigation also. Certain contrasting features of interest between the secondary flow field of the two fluids are also noted.
Resumo:
Data on pressure drop and heat transfer to aqueous solutions of glycerol flowing in different types of coiled pipes are presented for laminar flow in the range of NRe from 80 to 6000. An empirical correlation is set up which can account the present data as well as the data available in literature within ±10 per cent deviation. Conventional momentum and heat transfer analogy equation is used to analyse the present data.
Resumo:
Experiments and computer simulation studies have revealed existence of rich dynamics in the orientational relaxation of molecules in confined systems such as water in reverse micelles, cyclodextrin cavities, and nanotubes. Here we introduce a novel finite length one dimensional Ising model to investigate the propagation and the annihilation of dynamical correlations in finite systems and to understand the intriguing shortening of the orientational relaxation time that has been reported for small sized reverse micelles. In our finite sized model, the two spins at the two end cells are oriented in the opposite directions to mimic the effects of surface that in real system fixes water orientation in the opposite directions. This produces opposite polarizations to propagate inside from the surface and to produce bulklike condition at the center. This model can be solved analytically for short chains. For long chains, we solve the model numerically with Glauber spin flip dynamics (and also with Metropolis single-spin flip Monte Carlo algorithm). We show that model nicely reproduces many of the features observed in experiments. Due to the destructive interference among correlations that propagate from the surface to the core, one of the rotational relaxation time components decays faster than the bulk. In general, the relaxation of spins is nonexponential due to the interplay between various interactions. In the limit of strong coupling between the spins or in the limit of low temperature, the nature of relaxation of the spins undergoes a qualitative change with the emergence of a homogeneous dynamics where decay is predominantly exponential, again in agreement with experiments. (C) 2010 American Institute of Physics. doi: 10.1063/1.3474948]