950 resultados para Bragg peak


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fiber Bragg gratings can be used for monitoring different parameters in a wide variety of materials and constructions. The interrogation of fiber Bragg gratings traditionally consists of an expensive and spacious peak tracking or spectrum analyzing unit which needs to be deployed outside the monitored structure. We present a dynamic low-cost interrogation system for fiber Bragg gratings which can be integrated with the fiber itself, limiting the fragile optical in- and outcoupling interfaces and providing a compact, unobtrusive driving and read-out unit. The reported system is based on an embedded Vertical Cavity Surface Emitting Laser (VCSEL) which is tuned dynamically at 1 kHz and an embedded photodiode. Fiber coupling is provided through a dedicated 45° micromirror yielding a 90° in-the-plane coupling and limiting the total thickness of the fiber coupled optoelectronic package to 550 µm. The red-shift of the VCSEL wavelength is providing a full reconstruction of the spectrum with a range of 2.5 nm. A few-mode fiber with fiber Bragg gratings at 850 nm is used to prove the feasibility of this low-cost and ultra-compact interrogation approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A transversal-load sensor based on the local pressure-induced refractive index change in a chirped fiber Bragg grating (CFBG) is proposed. The local pressure induced refractive index change in the touch point can generate a main transmission peak and several subpeaks on the long wavelength side of the reflection band of the CFBG. The difference of the wavelength shifts for the main transmission peak and the first subpeak is used to measure transversal-load with temperature compensation capability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single- and multi-core passive and active germanate and tellurite glass fibers represent a new class of fiber host for in-fiber photonics devices and applications in mid-IR wavelength range, which are in increasing demand. Fiber Bragg grating (FBG) structures have been proven as one of the most functional in-fiber devices and have been mass-produced in silicate fibers by UV-inscription for almost countless laser and sensor applications. However, because of the strong UV absorption in germanate and tellurite fibers, FBG structures cannot be produced by UVinscription. In recent years femtosecond (fs) lasers have been developed for laser machining and microstructuring in a variety of glass fibers and planar substrates. A number of papers have been reported on fabrication of FBGs and long-period gratings in optical fibers and also on the photosensitivity mechanism using 800nm fs lasers. In this paper, we demonstrate for the first time the fabrication of FBG structures created in passive and active single- and three-core germanate and tellurite glass fibers by using 800nm fs-inscription and phase mask technique. With a fs peak power intensity in the order of 1011W/cm2, the FBG spectra with 2nd and 3rd order resonances at 1540nm and 1033nm in a single-core germanate glass fiber and 2nd order resonances between ~1694nm and ~1677nm with strengths up to 14dB in all three cores of three-core passive and active tellurite fibers were observed. Thermal and strain properties of the FBGs made in these mid-IR glass fibers were characterized, showing an average temperature responsivity of ~20pm/°C and a strain sensitivity of 1.219±0.003pm/µe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the first time, Fiber Bragg grating (FBG) structures have been inscribed in single-core passive germanate and three-core passive and active tellurite glass fibers using 800 nm femtosecond (fs) laser and phase mask technique. With fs peak power intensity in the order of 10(11)W/cm(2), the FBG spectra with 2nd and 3rd order resonances at 1540 and 1033 nm in the germanate glass fiber and 2nd order resonances at approximately 1694 and approximately 1677 nm with strengths up to 14 dB in all three cores in the tellurite fiber were observed. Thermal responsivities of the FBGs made in these mid-IR glass fibers were characterized, showing average temperature responsivity approximately 20 pm/ degrees C. Strain responsivities of the FBGs in germanate glass fiber were measured to be 1.219 pm/microepsilon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present experimental measurements of the peak splitting of the reflection spectra of fiber Bragg gratings as a result of birefringence induced by transverse loading of a multicore fiber. Measurements show that the splitting is a function of the applied load and the direction of the load relative to the azimuth of the fiber. A model for calculating the stress in the fiber that is due to an applied load is in good agreement with our experimental observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first resonant-cavity time-division-multiplexed (TDM) fiber Bragg grating sensor interrogation system is reported. This novel design uses a pulsed semiconductor optical amplifier in a cyclic manner to function as the optical source, amplifier, and modulator. Compatible with a range of standard wavelength detection techniques, this optically gated TDM system allows interrogation of low reflectivity "commodity" sensors spaced just 2 m apart, using a single active component. Results demonstrate an exceptional optical signal-to-noise ratio of 36 dB, a peak signal power of over +7 dBm, and no measurable crosstalk between sensors. Temperature tuning shows that the system is fully stable with a highly linear response. © 2004 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have generated near-transform-limited picosecond pulses(ΔτΔν≈0.45) from a gain-switched diode laser using periodic and chirped fiber Bragg gratings. This configuration reduced the spectral bandwidth from 11 to 0.08 nm and the pulse duration was reduced, from 30 to<18 ps. Average and peak powers of 27 and 770 mW, respectively, were obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report observations and measurements of the inscription of fiber Bragg gratings (FBGs) in two different types of microstructured polymer optical fiber: few-mode and an endlessly single mode. Contrary to the FBG inscription in silica microstructured fiber, where high-energy laser pulses are a prerequisite, we have successfully used a low-power cw laser source operating at 325 nm to produce 1 cm long gratings with a reflection peak at 1570 nm. Peak reflectivities of more than 10% have been observed. © 2005 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fiber Bragg gratings can be used for monitoring different parameters in a wide variety of materials and constructions. The interrogation of fiber Bragg gratings traditionally consists of an expensive and spacious peak tracking or spectrum analyzing unit which needs to be deployed outside the monitored structure. We present a dynamic low-cost interrogation system for fiber Bragg gratings which can be integrated with the fiber itself, limiting the fragile optical in- and outcoupling interfaces and providing a compact, unobtrusive driving and read-out unit. The reported system is based on an embedded Vertical Cavity Surface Emitting Laser (VCSEL) which is tuned dynamically at 1 kHz and an embedded photodiode. Fiber coupling is provided through a dedicated 45° micromirror yielding a 90° in-the-plane coupling and limiting the total thickness of the fiber coupled optoelectronic package to 550 µm. The red-shift of the VCSEL wavelength is providing a full reconstruction of the spectrum with a range of 2.5 nm. A few-mode fiber with fiber Bragg gratings at 850 nm is used to prove the feasibility of this low-cost and ultra-compact interrogation approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a linear response optical refractive index (RI) sensor, which is fabricated based on a micro-channel created within a Fabry Perot (F-P) cavity by chemical etching assisted by femtosecond laser inscription. The experimental results show the F-P resonance peak has a linear response with the RI of medium and the measuring sensitivity is proportion to the length of micro-channel. The sensor with 5 μm -long micro-channel exhibited an RI sensitivity of 1.15nm/RIU and this sensitivity increased to 9.08nm/RIU when widening the micro-channel to 35μm. Furthermore, such micro-channel FP sensors show a much broader RI sensing dynamic range (from 1.3 to 1.7) than other reported optical fiber sensors. © 2012 SPIE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A carbon nanotube (CNT)-modified microfiber Bragg grating (MFBG) is proposed to measure the refractive index with a strong enhancement of the sensitivity in the low refractive index region. The introduction of the CNT layer influences the evanescent field of the MFBG and causes modification of the reflection spectrum. With the increase of the surrounding refractive index (SRI), we observe significant attenuation to the peak of the Bragg resonance, while its wavelength remains almost unchanged. Our detailed experimental results disclose that the CNT-MFBG demonstrates strong sensitivity in the low refractive index range of 1.333-1.435, with peak intensity up to -53.4 dBm/refractive index unit, which is 15-folds higher than that of the uncoated MFBG. Therefore, taking advantage of the CNT-induced evanescent field enhancement, the reflective MFBG probe presents strong sensing capability in biochemical fields.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this chapter we propose clipping with amplitude and phase corrections to reduce the peak-to-average power ratio (PAR) of orthogonal frequency division multiplexed (OFDM) signals in high-speed wireless local area networks defined in IEEE 802.11a physical layer. The proposed techniques can be implemented with a small modification at the transmitter and the receiver remains standard compliant. PAR reduction as much as 4dB can be achieved by selecting a suitable clipping ratio and a correction factor depending on the constellation used. Out of band noise (OBN) is also reduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parallel combinatory orthogonal frequency division multiplexing (PC-OFDM yields lower maximum peak-to-average power ratio (PAR), high bandwidth efficiency and lower bit error rate (BER) on Gaussian channels compared to OFDM systems. However, PC-OFDM does not improve the statistics of PAR significantly. In this chapter, the use of a set of fixed permutations to improve the statistics of the PAR of a PC-OFDM signal is presented. For this technique, interleavers are used to produce K-1 permuted sequences from the same information sequence. The sequence with the lowest PAR, among K sequences is chosen for the transmission. The PAR of a PC-OFDM signal can be further reduced by 3-4 dB by this technique. Mathematical expressions for the complementary cumulative density function (CCDF)of PAR of PC-OFDM signal and interleaved PC-OFDM signal are also presented.