971 resultados para Brachiocephalic Trunk
Resumo:
Objectives. Theoretic modeling and experimental studies suggest that functional electrical stimulation (FES) can improve trunk balance in spinal cord injured subjects. This can have a positive impact on daily life, increasing the volume of bimanual workspace, improving sitting posture, and wheelchair propulsion. A closed loop controller for the stimulation is desirable, as it can potentially decrease muscle fatigue and offer better rejection to disturbances. This paper proposes a biomechanical model of the human trunk, and a procedure for its identification, to be used for the future development of FES controllers. The advantage over previous models resides in the simplicity of the solution proposed, which makes it possible to identify the model just before a stimulation session ( taking into account the variability of the muscle response to the FES). Materials and Methods. The structure of the model is based on previous research on FES and muscle physiology. Some details could not be inferred from previous studies, and were determined from experimental data. Experiments with a paraplegic volunteer were conducted in order to measure the moments exerted by the trunk-passive tissues and artificially stimulated muscles. Data for model identification and validation also were collected. Results. Using the proposed structure and identification procedure, the model could adequately reproduce the moments exerted during the experiments. The study reveals that the stimulated trunk extensors can exert maximal moment when the trunk is in the upright position. In contrast, previous studies show that able-bodied subjects can exert maximal trunk extension when flexed forward. Conclusions. The proposed model and identification procedure are a successful first step toward the development of a model-based controller for trunk FES. The model also gives information on the trunk in unique conditions, normally not observable in able-bodied subjects (ie, subject only to extensor muscles contraction).
Resumo:
Paraplegic subjects lack trunk stability due to the loss of voluntary muscle control.This leads to a restriction of the volume of bi-manual workspace available,and hence has a detrimental impact on activities of daily living. Electrical Stimulation of paralysed muscles can be used to stabilize the trunk, but has never been applied in closed loop for this purpose. This paper describes the development of two closed loop controllers(PID and LQR),and their experimental evaluation on a human subject. Advantages and disadvantages of the two are discussed,considering a potential use of this technology during daily activities.
Resumo:
This article examines a little known decision of the Judicial Committee of the Privy Council: Grand Trunk Railway Company of Canada v Robinson (1915). The examination is historical and it provides a different insight into the understanding of privity of contract, a doctrine central to contract law. The examination reveals a process of trans-Atlantic legal migration in which English law was applied to resolve an Ontario case. The nature of the resolution is surprising because it appears to conflict with the better known decision of the House of Lords, Dunlop Pneumatic Tyre Company, Limited v Selfridge and Company, Limited, which a similarly constituted panel delivered in the same week. This article argues that there was a greater malleability in the resolution of cases concerned with privity than was thought to have existed. It is also argued that the power of Canadian railway capitalism is a significant factor in understanding the legal resolution of the case. Finally, it the article considers the use of English and American precedents relevant to the case. The application of English precedents to the case led to a resolution not entirely befitting Canadian conditions.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study evaluated anteroposterior trunk movements and the time spent on activities of load-carrying to surfaces at different heights, among experienced and inexperienced individuals. Thirty-six healthy males (16 experienced and 20 inexperienced in load-carrying) had their trunk movements recorded by an electrogoniometer while transporting boxes (7 and 15 kg) to surfaces of variable heights (low, low intermediate, high intermediate and high). Longer time was spent on trunk flexion when carrying loads to low surfaces and on trunk extension when carrying to high surfaces (p<0.05). Differences in time spent on trunk flexion/extension were identified between loads, and between groups for the heavier load. There were no differences in flexion/extension amplitudes between groups or loads. Although unnecessary flexion/extension occurring prior to a task may increase the exposure of the trunk to risky movements, the amplitudes reported here were relatively small and seemed to have occurred to facilitate the final tasks.Relevance to industryLifting devices and technological assistance are increasingly available in industrial settings. However, distribution centers and delivery services represent new demands on workers and involve an expressive amount of manual handling and carrying activities. Thus, studies on carrying strategies are necessary as they can provide guidelines for safer activities. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Objective: Hand-held flexible poles which are brought into oscillation to cause alternating forces on trunk, are advocated as training devices that are supposed to solicit increased levels of stabilizing trunk muscle activity. The aim of this study was to verify this claim by comparing electromyographic (EMG) activity of trunk muscles during exercises performed with a flexible pole and a rigid pole.Methods: Twelve healthy females performed three different exercises with flexible and rigid poles. EMG activity of iliocostalis lumborum (IL), multifidus (MU), rectus abdominis (RA), external oblique (EO) and internal oblique (IO), and was continuously measured. The EMG signals were analyzed in time domain by calculation of the Root Mean Square (RMS) amplitudes over 250 ms windows. The mean RMS-values over time were normalized by the maximum RMS obtained for each muscle.Results: The IO showed a 72% greater EMG activity during the exercises performed with the flexible pole than with the rigid pole (p = 0.035). In exercises performed in standing, the IO was significantly more active than when sitting (p = 0.006).Conclusion: As intended, the cyclic forces induced by the oscillating pole did increase trunk muscle activation. However, the effect was limited and significant for the IO muscle only.
Resumo:
The authors studied the trapezius (middle portion) and rhomboideus major muscles in movements of flexion, extension, inclination and rotation of the trunk. The electromyographic records demonstrate that such muscles show activity only at the ending of flexion, being inactive in the other movements.
Resumo:
The aim of this study was to correlate the root trunk height from the furcation openings on the buccal, mesial and distal surfaces to the cemento-enamel junction in upper first permanent molars in human beings with risk for periodontal disease progression. One hundred extracted maxillary first molars were used. Reference points and demarcations were determined from the entrance of the buccal (F1), mesial (F2) and distal (F3) furcations to the cemento-enamel junction in millimeters. The mean distances found were 3.50 mm, 4.44 mm and 4.26 mm for the buccal, mesial and distal furcations, respectively, in relation to the cemento-enamel junction. The statistical analyses were Student's t-test and Chi-square (X2). With periodontal disease progression, the buccal furcation presents a greater compromising risk due to its proximity to the cemento-enamel junction, while the mesial furcation is the most distant, comprising a lesser risk.
Resumo:
This study aimed to analyze the electromyographic (EMG) activity of iliocostalis lumborum (IL), internal oblique (IO) and multifidus (MU) and the antagonist cocontraction (IO/MU and IO/IL) during the performance of Centering Principle of Pilates Method. Participating in this study were eighteen young and physically fit volunteers, without experience in Pilates Method, divided in two groups: low back pain group (LBPG, n = 8) and control group (CG, n = 10). Two isometric contractions of IO muscles (Centering Principle) were performed in upright sitting posture. EMG signal amplitude was calculated by Root Mean Square (RMS), which was normalized by RMS maximum value. The common area method to calculate the antagonist cocontraction index was used. MU and IO activation and IO/MU cocontraction (. p < 0.05) were higher in CG. The CG therefore showed a higher stabilizer muscles recruitment than LBPG during the performance of Centering Principle of Pilates Method. © 2012 Elsevier Ltd.