977 resultados para Bow and arrow.
Resumo:
Mode of access: Internet.
Resumo:
"USDA Forest Service research paper."
Resumo:
Több mint harminc év telt el Kornai János Anti-equilibrium című könyvének megjelenése óta. Ez volt az első mű a nemzetközi irodalomban, amely átfogóan bírálta az általános egyensúlyelméletet, mégpedig Debreu értékelméletén és az Arrow-Debreu modellen keresztül. A kritikára legélesebben Frank H. Hahn reagált, amire Kornai - fenntartva korábbi bírálatainak többségét - a közelmúltban megjelent önéletrajzában tért vissza. E cikkben elmélettörténeti előzményekkel együtt rekonstruáljuk a Kornai-Hahn-vita főbb pontjait, és megvizsgáljuk a kritikák és riposztok érvényességét. Látni fogjuk, hogy a legújabb közgazdasági elméletek nem mindenben igazolták Hahn ellenvetéseit. _______________ More than thirty years have passed since János Kornai s book Anti-Equilibrium appeared. This was the first work in international literature to criticize comprehensively the general theory of equilibrium, moreover through the value theory of Debreu and the Arrow-Debreu Model. The sharpest reaction to the criticism came from Frank H. Hahn, and Kornai returned to this in his recent autobiography. This article reconstructs the main points in the Kornai-Hahn debate, including its antecedents in the history of theory, and examines the validity of the criticisms and ripostes. It will be seen that Hahn s objections have not been endorsed in every respect by the latest economic theories.
Resumo:
We consider distributions u is an element of S'(R) of the form u(t) = Sigma(n is an element of N) a(n)e(i lambda nt), where (a(n))(n is an element of N) subset of C and Lambda = (lambda n)(n is an element of N) subset of R have the following properties: (a(n))(n is an element of N) is an element of s', that is, there is a q is an element of N such that (n(-q) a(n))(n is an element of N) is an element of l(1); for the real sequence., there are n(0) is an element of N, C > 0, and alpha > 0 such that n >= n(0) double right arrow vertical bar lambda(n)vertical bar >= Cn(alpha). Let I(epsilon) subset of R be an interval of length epsilon. We prove that for given Lambda, (1) if Lambda = O(n(alpha)) with alpha < 1, then there exists epsilon > 0 such that u vertical bar I(epsilon) = 0 double right arrow u 0; (2) if Lambda = O(n) is uniformly discrete, then there exists epsilon > 0 such that u vertical bar I(epsilon) = 0 double right arrow u 0; (3) if alpha > 1 and. is uniformly discrete, then for all epsilon > 0, u vertical bar I(epsilon) = 0 double right arrow u = 0. Since distributions of the above mentioned form are very common in engineering, as in the case of the modeling of ocean waves, signal processing, and vibrations of beams, plates, and shells, those uniqueness and nonuniqueness results have important consequences for identification problems in the applied sciences. We show an identification method and close this article with a simple example to show that the recovery of geometrical imperfections in a cylindrical shell is possible from a measurement of its dynamics.
Resumo:
Measurements of double-helicity asymmetries in inclusive hadron production in polarized p + p collisions are sensitive to helicity-dependent parton distribution functions, in particular, to the gluon helicity distribution, Delta g. This study focuses on the extraction of the double-helicity asymmetry in eta production ((p) over right arrow + (p) over right arrow -> eta + X), the eta cross section, and the eta/pi(0) cross section ratio. The cross section and ratio measurements provide essential input for the extraction of fragmentation functions that are needed to access the helicity-dependent parton distribution functions.
Resumo:
This paper makes two points. First, we show that the line-of-sight solution to cosmic microwave anisotropies in Fourier space, even though formally defined for arbitrarily large wavelengths, leads to position-space solutions which only depend on the sources of anisotropies inside the past light cone of the observer. This foretold manifestation of causality in position (real) space happens order by order in a series expansion in powers of the visibility gamma = e(-mu), where mu is the optical depth to Thomson scattering. We show that the contributions of order gamma(N) to the cosmic microwave background (CMB) anisotropies are regulated by spacetime window functions which have support only inside the past light cone of the point of observation. Second, we show that the Fourier-Bessel expansion of the physical fields (including the temperature and polarization momenta) is an alternative to the usual Fourier basis as a framework to compute the anisotropies. The viability of the Fourier-Bessel series for treating the CMB is a consequence of the fact that the visibility function becomes exponentially small at redshifts z >> 10(3), effectively cutting off the past light cone and introducing a finite radius inside which initial conditions can affect physical observables measured at our position (x) over right arrow = 0 and time t(0). Hence, for each multipole l there is a discrete tower of momenta k(il) (not a continuum) which can affect physical observables, with the smallest momenta being k(1l) similar to l. The Fourier-Bessel modes take into account precisely the information from the sources of anisotropies that propagates from the initial value surface to the point of observation-no more, no less. We also show that the physical observables (the temperature and polarization maps), and hence the angular power spectra, are unaffected by that choice of basis. This implies that the Fourier-Bessel expansion is the optimal scheme with which one can compute CMB anisotropies.
Resumo:
Over the last decades, anti-resonant reflecting optical waveguides (ARROW) have been used in different integrated optics applications. In this type of waveguide, light confinement is partially achieved through an anti-resonant reflection. In this work, the simulation, fabrication and characterization of ARROW waveguides using dielectric films deposited by a plasma-enhanced chemical vapor deposition (PECVD) technique, at low temperatures(similar to 300 degrees C), are presented. Silicon oxynitride (SiO(x)N(y)) films were used as core and second cladding layers and amorphous hydrogenated silicon carbide(a-SiC:H) films as first cladding layer. Furthermore, numerical simulations were performed using homemade routines based on two computational methods: the transfer matrix method (TMM) for the determination of the optimum thickness of the Fabry-Perot layers; and the non-uniform finite difference method (NU-FDM) for 2D design and determination of the maximum width that yields single-mode operation. The utilization of a silicon carbide anti-resonant layer resulted in low optical attenuations, which is due to the high refractive index difference between the core and this layer. Finally, for comparison purposes, optical waveguides using titanium oxide (TiO(2)) as the first ARROW layer were also fabricated and characterized.
Resumo:
Free-piston-driven expansion tubes are capable of generating flaw conditions over a wide range of enthalpies ranging from orbital up to superorbital velocities. Initial optical measurements aimed at investigating the flow in such a facility are presented. Emission studies were used to identify impurities in the how and to investigate spectral regions that are accessible by optical techniques. At moderate enthalpies, it was found that significant radiation resulted from metallic contaminants. At high enthalpies, the spectrum consisted of a number of atomic lines together with a broadband background component indicative of the presence of electrons. The presence of this radiation may limit the applicability of optical techniques that require spectral regions free from the influence of atomic transitions or background radiation. Emission spectroscopy (through Stark broadened hydrogen lines) and two-wavelength holographic interferometry were used to measure the electron number density behind a bow shock on a blunt body at conditions where significant ionization was observed. They yielded average concentrations of (3 +/- 1) x 10(17) cm(-3) from the emission measurements and (3.8 +/- 0.6) x 10(17) cm(-3) from the interferometry.
Resumo:
The supersonic flow around a cylindrical body has been studied using two optical techniques. For both sets of measurements, the cylinder was mounted from the side of the tunnel, allowing investigation of the bow shock region as well as in the wake. A new technique, laser-enhanced ionization flow tagging, was used for streamwise velocity determinations behind the body. From these measurements, it was found that the downstream velocity outside the wake was (1.90 +/- 0.06) km/s, whereas inside the wake the velocity was about 0-500 m/s in the upstream direction. Planar laser induced fluorescence of nitric oxide was employed for temperature determinations. It was established that the freestream temperature was (2120 +/- 100) K, decreasing to around (1550 +/- 400) K in the wake.
Resumo:
Thirty-one patients with unilateral long-standing facial palsy underwent I-stage reanimation with free gracilis muscle transplant innervated by the masseteric branch of the trigeminal nerve. They were divided into 2 nonrandomized groups according to insertion technique: group 1 (9 patients), interrupted suture between the free flap and the orbicularis oris of the upper and lower lip on the paralyzed side; group It (22 patients), palmaris longus tendon graft placed between the gracilis free flap and the orbicularis oris of the upper and lower lip on the nonparalyzed side. Qualitative evaluation of the smile demonstrated better results in patients from group II. Comparing the position Of the Cupid`s bow at rest, pre- and postoperatively in each patient, we observed significant improvement of facial symmetry in both groups. During smile, however, there was a significantly higher rate of centralization of the Cupid`s bow in patients submitted to reanimation with the use of the palmaris longus tendon (group II).
Resumo:
The production of nanotechnology-based products is increasing, along with the conscience of the possible harmful effects of some nanomaterials. The “safety-by-design” approaches are getting attention as helpful tools to develop safer products and production processes. The Systematic Design Analysis Approach could help to identify the solutions to control the workplace risks by defining the emission and exposure scenarios and the possible barriers to interrupt them. By applying this approach in a photocatalytic ceramic tiles development project it was possible to identify relevant nanoparticles emission scenarios and related barriers, and defining possible ways to reduce it.
Resumo:
In this paper we propose the infimum of the Arrow-Pratt index of absolute risk aversion as a measure of global risk aversion of a utility function. We then show that, for any given arbitrary pair of distributions, there exists a threshold level of global risk aversion such that all increasing concave utility functions with at least as much global risk aversion would rank the two distributions in the same way. Furthermore, this threshold level is sharp in the sense that, for any lower level of global risk aversion, we can find two utility functions in this class yielding opposite preference relations for the two distributions.
Resumo:
In the literature on risk, one generally assume that uncertainty is uniformly distributed over the entire working horizon, when the absolute risk-aversion index is negative and constant. From this perspective, the risk is totally exogenous, and thus independent of endogenous risks. The classic procedure is "myopic" with regard to potential changes in the future behavior of the agent due to inherent random fluctuations of the system. The agent's attitude to risk is rigid. Although often criticized, the most widely used hypothesis for the analysis of economic behavior is risk-neutrality. This borderline case must be envisaged with prudence in a dynamic stochastic context. The traditional measures of risk-aversion are generally too weak for making comparisons between risky situations, given the dynamic �complexity of the environment. This can be highlighted in concrete problems in finance and insurance, context for which the Arrow-Pratt measures (in the small) give ambiguous.