980 resultados para Boundary elements
Resumo:
This work presents an application for the plate analysis formulation by BEM where 3 boundary equations are used, written for the transverse displacement w and the normal and tangential derivatives partial derivativew/partial derivativen and partial derivativew/partial derivatives. In this extension, the transverse displacement w is approximated by a cubic polynomial and, as a consequence, partial derivativew/partial derivatives has a quadratic approximation. This alternative BEM formulation improves the analysis of thin plates, when compared to the formulation using the linear approximation for the displacements, mainly in the obtaining of the bending moments at the boundary of the plate. The implementation of this proposal to the computational codes is simple. (C) 2004 Published by Elsevier Ltd.
Resumo:
In this work, are discussed two formulations of the boundary element method - BEM to perform linear bending analysis of plates reinforced by beams. Both formulations are based on the Kirchhoffs hypothesis and they are obtained from the reciprocity theorem applied to zoned plates, where each sub-region defines a beam or a stab. In the first model the problem values are defined along the interfaces and the external boundary. Then, in order to reduce the number of degrees of freedom kinematics hypothesis are assumed along the beam cross section, leading to a second formulation where the collocation points are defined along the beam skeleton, instead of being placed on interfaces. on these formulations no approximation of the generalized forces along the interface is required. Moreover, compatibility and equilibrium conditions along the interface are automatically imposed by the integral equation. Thus, these formulations require less approximation and the total number of the degrees of freedom is reduced. In the numerical examples are discussed the differences between these two BEM formulations, comparing as well the results to a well-known finite element code.
Resumo:
In this work, the plate bending formulation of the boundary element method - BEM, based on the Reissner's hypothesis, is extended to the analysis of plates reinforced by beams taking into account the membrane effects. The formulation is derived by assuming a zoned body where each sub-region defines a beam or a slab and all of them are represented by a chosen reference surface. Equilibrium and compatibility conditions are automatically imposed by the integral equations, which treat this composed structure as a single body. In order to reduce the number of degrees of freedom, the problem values defined on the interfaces are written in terms of their values on the beam axis. Initially are derived separated equations for the bending and stretching problems, but in the final system of equations the two problems are coupled and can not be treated separately. Finally are presented some numerical examples whose analytical results are known to show the accuracy of the proposed model.
Resumo:
In this work, a boundary element formulation to analyse plates reinforced by rectangular beams, with columns defined in the domain is proposed. The model is based on Kirchhoff hypothesis and the beams are not required to be displayed over the plate surface, therefore eccentricity effects are taken into account. The presented boundary element method formulation is derived by applying the reciprocity theorem to zoned plates, where beams are treated as thin sub-regions with larger rigidities. The integral representations derived for this complex structural element consider the bending and stretching effects of both structural elements working together. The standard equilibrium and compatibility conditions along interface are naturally imposed, being the bending tractions eliminated along interfaces. The in-plane tractions and the bending and in-plane displacements are approximated along the beam width, reducing the number of degrees of freedom. The columns are introduced into the formulation by considering domain points where tractions can be prescribed. Some examples are then shown to illustrate the accuracy of the formulation, comparing the obtained results with other numerical solutions.
Resumo:
A boundary element method (BEM) formulation to predict the behavior of solids exhibiting displacement (strong) discontinuity is presented. In this formulation, the effects of the displacement jump of a discontinuity interface embedded in an internal cell are reproduced by an equivalent strain field over the cell. To compute the stresses, this equivalent strain field is assumed as the inelastic part of the total strain. As a consequence, the non-linear BEM integral equations that result from the proposed approach are similar to those of the implicit BEM based on initial strains. Since discontinuity interfaces can be introduced inside the cell independently on the cell boundaries, the proposed BEM formulation, combined with a tracking scheme to trace the discontinuity path during the analysis, allows for arbitrary discontinuity propagation using a fixed mesh. A simple technique to track the crack path is outlined. This technique is based on the construction of a polygonal line formed by segments inside the cells, in which the assumed failure criterion is reached. Two experimental concrete fracture tests were analyzed to assess the performance of the proposed formulation.
Resumo:
In this work, the plate bending formulation of the boundary element method (BEM) based on the Reissner's hypothesis is extended to the analysis of zoned plates in order to model a building floor structure. In the proposed formulation each sub-region defines a beam or a slab and depending on the way the sub-regions are represented, one can have two different types of analysis. In the simple bending problem all sub-regions are defined by their middle surface. on the other hand, for the coupled stretching-bending problem all sub-regions are referred to a chosen reference surface, therefore eccentricity effects are taken into account. Equilibrium and compatibility conditions are automatically imposed by the integral equations, which treat this composed structure as a single body. The bending and stretching values defined on the interfaces are approximated along the beam width, reducing therefore the number of degrees of freedom. Then, in the proposed model the set of equations is written in terms of the problem values on the beam axis and on the external boundary without beams. Finally some numerical examples are presented to show the accuracy of the proposed model.
Resumo:
In this work, the plate bending formulation of the boundary element method (BEM), based on the Reissner's hypothesis, is extended to the analysis of plates reinforced by rectangular beams. This composed structure is modelled by a zoned plate, being the beams represented by narrow sub-regions with larger thickness. The integral equations are derived by applying the weighted residual method to each sub-region, and summing them to get the equation for the whole plate. Equilibrium and compatibility conditions are automatically imposed by the integral equations, which treat this composed structure as a single body. In order to decrease the number of degrees of freedom, some approximations are considered for both displacements and tractions along the beam width. The accuracy of the proposed model is illustrated by simple examples whose exact solution are known as well as by more complex examples whose numerical results are compared with a well-known finite element code.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper deals with the numerical analysis of saturated porous media, taking into account the damage phenomena on the solid skeleton. The porous media is taken into poro-elastic framework, in full-saturated condition, based on Biot's Theory. A scalar damage model is assumed for this analysis. An implicit boundary element method (BEM) formulation, based on time-independent fundamental solutions, is developed and implemented to couple the fluid flow and two-dimensional elastostatic problems. The integration over boundary elements is evaluated using a numerical Gauss procedure. A semi-analytical scheme for the case of triangular domain cells is followed to carry out the relevant domain integrals. The non-linear problem is solved by a Newton-Raphson procedure. Numerical examples are presented, in order to validate the implemented formulation and to illustrate its efficacy. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
[EN] This work presents a 2D finite elements - boundary elements coupling model for the harmonic analysis of beam structures founded on viscoelastic domains. The beam structure is modeled by finite elements, whereas the soil is modeled as a homogeneous isotropic viscoelastic boundary element region. The coupling is enforced through a rigid boundary in which equilibrium and compatibility conditions are applied. Formulation and implementation are presented together with some application examples.
Resumo:
[EN] This paper shows a BEM-FEM coupling model for the time harmonic dynamic analysis of piles and pile groups embeddes in an elastic half-space. Piles are modelled using Finite Elements (FEM) as a beam according to the Bernoulli hypothesis, while the soil modelled using Boundary Elements (BEM) as a continuum, semi-infinite, isotropic, homogeneous or zoned homogeneous, linear, viscoelastic medium.
Resumo:
[EN]This work presents a time-harmonic boundary elementfinite element three-dimensional model for the dynamic analysis of building structures founded on elastic or porelastic soils. The building foundation and soil domains are modelled as homogeneous, isotropic, elastic or poroelastic media using boundary elements.
A 2D BEM-FEM approach for time harmonic fluid-structure interaction analysis of thin elastic bodies.
Resumo:
[EN]This paper deals with two-dimensional time harmonic fluid-structure interaction problems when the fluid is at rest, and the elastic bodies have small thicknesses. A BEM-FEM numerical approach is used, where the BEM is applied to the fluid, and the structural FEM is applied to the thin elastic bodies.
Resumo:
A method, using boundary elements, is presented as a solution to plane transient heat conduction. The proposed method considers the governing equation to be a Helmholtz's equation and solves the problem of time variation using step by step integration. A numerical procedure is developed and its effectiveness verified. Several examples are provided and their results compared with the theoretical ones.