976 resultados para Boots and shoes
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
This community-based research project, in collaboration with the Gananoque and Area Food Access Network (GAFAN), gathered data from self-reported food insecure residents of Gananoque and area to determine how to improve their access to healthy, personally acceptable food. In March 2016, I recruited 14 participants for three focus groups and one personal interview with those struggling to put food on the table for themselves and others in the household. Participants were single parents, adults over the age of 50, and adults who could benefit from improved access to healthy food but do not currently use existing services. Health issues, social isolation, scraping by, and lack of income were four themes that underscored the impact of poverty on the lives of participants. Lack of income, transportation, cost of food, lack of affordable or accessible childcare, and inadequate access to support services proved to be major barriers to food security: strongly influenced by the impact of rurality. The results of this research have the potential to help GAFAN improve food access for those living in this community. It may also have implications for enhancing food security in other rural Canadian communities.
Resumo:
In children, joint hypermobility (typified by structural instability of joints) manifests clinically as neuro-muscular and musculo-skeletal conditions and conditions associated with development and organization of control of posture and gait (Finkelstein, 1916; Jahss, 1919; Sobel, 1926; Larsson, Mudholkar, Baum and Srivastava, 1995; Murray and Woo, 2001; Hakim and Grahame, 2003; Adib, Davies, Grahame, Woo and Murray, 2005:). The process of control of the relative proportions of joint mobility and stability, whilst maintaining equilibrium in standing posture and gait, is dependent upon the complex interrelationship between skeletal, muscular and neurological function (Massion, 1998; Gurfinkel, Ivanenko, Levik and Babakova, 1995; Shumway-Cook and Woollacott, 1995). The efficiency of this relies upon the integrity of neuro-muscular and musculo-skeletal components (ligaments, muscles, nerves), and the Central Nervous System’s capacity to interpret, process and integrate sensory information from visual, vestibular and proprioceptive sources (Crotts, Thompson, Nahom, Ryan and Newton, 1996; Riemann, Guskiewicz and Shields, 1999; Schmitz and Arnold, 1998) and development and incorporation of this into a representational scheme (postural reference frame) of body orientation with respect to internal and external environments (Gurfinkel et al., 1995; Roll and Roll, 1988). Sensory information from the base of support (feet) makes significant contribution to the development of reference frameworks (Kavounoudias, Roll and Roll, 1998). Problems with the structure and/ or function of any one, or combination of these components or systems, may result in partial loss of equilibrium and, therefore ineffectiveness or significant reduction in the capacity to interact with the environment, which may result in disability and/ or injury (Crotts et al., 1996; Rozzi, Lephart, Sterner and Kuligowski, 1999b). Whilst literature focusing upon clinical associations between joint hypermobility and conditions requiring therapeutic intervention has been abundant (Crego and Ford, 1952; Powell and Cantab, 1983; Dockery, in Jay, 1999; Grahame, 1971; Childs, 1986; Barton, Bird, Lindsay, Newton and Wright, 1995a; Rozzi, et al., 1999b; Kerr, Macmillan, Uttley and Luqmani, 2000; Grahame, 2001), there has been a deficit in controlled studies in which the neuro-muscular and musculo-skeletal characteristics of children with joint hypermobility have been quantified and considered within the context of organization of postural control in standing balance and gait. This was the aim of this project, undertaken as three studies. The major study (Study One) compared the fundamental neuro-muscular and musculo-skeletal characteristics of 15 children with joint hypermobility, and 15 age (8 and 9 years), gender, height and weight matched non-hypermobile controls. Significant differences were identified between previously undiagnosed hypermobile (n=15) and non-hypermobile children (n=15) in passive joint ranges of motion of the lower limbs and lumbar spine, muscle tone of the lower leg and foot, barefoot CoP displacement and in parameters of barefoot gait. Clinically relevant differences were also noted in barefoot single leg balance time. There were no differences between groups in isometric muscle strength in ankle dorsiflexion, knee flexion or extension. The second comparative study investigated foot morphology in non-weight bearing and weight bearing load conditions of the same children with and without joint hypermobility using three dimensional images (plaster casts) of their feet. The preliminary phase of this study evaluated the casting technique against direct measures of foot length, forefoot width, RCSP and forefoot to rearfoot angle. Results indicated accurate representation of elementary foot morphology within the plaster images. The comparative study examined the between and within group differences in measures of foot length and width, and in measures above the support surface (heel inclination angle, forefoot to rearfoot angle, normalized arch height, height of the widest point of the heel) in the two load conditions. Results of measures from plaster images identified that hypermobile children have different barefoot weight bearing foot morphology above the support surface than non-hypermobile children, despite no differences in measures of foot length or width. Based upon the differences in components of control of posture and gait in the hypermobile group, identified in Study One and Study Two, the final study (Study Three), using the same subjects, tested the immediate effect of specifically designed custom-made foot orthoses upon balance and gait of hypermobile children. The design of the orthoses was evaluated against the direct measures and the measures from plaster images of the feet. This ascertained the differences in morphology of the modified casts used to mould the orthoses and the original image of the foot. The orthoses were fitted into standardized running shoes. The effect of the shoe alone was tested upon the non-hypermobile children as the non-therapeutic equivalent condition. Immediate improvement in balance was noted in single leg stance and CoP displacement in the hypermobile group together with significant immediate improvement in the percentage of gait phases and in the percentage of the gait cycle at which maximum plantar flexion of the ankle occurred in gait. The neuro-muscular and musculo-skeletal characteristics of children with joint hypermobility are different from those of non-hypermobile children. The Beighton, Solomon and Soskolne (1973) screening criteria successfully classified joint hypermobility in children. As a result of this study joint hypermobility has been identified as a variable which must be controlled in studies of foot morphology and function in children. The outcomes of this study provide a basis upon which to further explore the association between joint hypermobility and neuro-muscular and musculo-skeletal conditions, and, have relevance for the physical education of children with joint hypermobility, for footwear and orthotic design processes, and, in particular, for clinical identification and treatment of children with joint hypermobility.
Resumo:
The use of Intra-aortic counterpulsation is a well established supportive therapy for patients in cardiac failure or after cardiac surgery. Blood pressure variations induced by counterpulsation are transmitted to the cerebral arteries, challenging cerebral autoregulatory mechanisms in order to maintain a stable cerebral blood flow. This study aims to assess the effects on cerebral autoregulation and variability of cerebral blood flow due to intra-aortic balloon pump and inflation ratio weaning.
Resumo:
Background Apart from helmets, little is known about the effectiveness of motorcycle protective clothing in reducing injuries in crashes. The study aimed to quantify the association between usage of motorcycle clothing and injury in crashes. Methods and findings Cross-sectional analytic study. Crashed motorcyclists (n = 212, 71% of identified eligible cases) were recruited through hospitals and motorcycle repair services. Data was obtained through structured face-to-face interviews. The main outcome was hospitalization and motorcycle crash-related injury. Poisson regression was used to estimate relative risk (RR) and 95% confidence intervals for injury adjusting for potential confounders. Results Motorcyclists were significantly less likely to be admitted to hospital if they crashed wearing motorcycle jackets (RR = 0.79, 95% CI: 0.69–0.91), pants (RR = 0.49, 95% CI: 0.25–0.94), or gloves (RR = 0.41, 95% CI: 0.26–0.66). When garments included fitted body armour there was a significantly reduced risk of injury to the upper body (RR = 0.77, 95% CI: 0.66–0.89), hands and wrists (RR = 0.55, 95% CI: 0.38–0.81), legs (RR = 0.60, 95% CI: 0.40–0.90), feet and ankles (RR = 0.54, 95% CI: 0.35–0.83). Non-motorcycle boots were also associated with a reduced risk of injury compared to shoes or joggers (RR = 0.46, 95% CI: 0.28–0.75). No association between use of body armour and risk of fracture injuries was detected. A substantial proportion of motorcycle designed gloves (25.7%), jackets (29.7%) and pants (28.1%) were assessed to have failed due to material damage in the crash. Conclusions Motorcycle protective clothing is associated with reduced risk and severity of crash related injury and hospitalization, particularly when fitted with body armour. The proportion of clothing items that failed under crash conditions indicates a need for improved quality control. While mandating usage of protective clothing is not recommended, consideration could be given to providing incentives for usage of protective clothing, such as tax exemptions for safety gear, health insurance premium reductions and rebates.
Resumo:
Kinematic models are commonly used to quantify foot and ankle kinematics, yet no marker sets or models have been proven reliable or accurate when wearing shoes. Further, the minimal detectable difference of a developed model is often not reported. We present a kinematic model that is reliable, accurate and sensitive to describe the kinematics of the foot–shoe complex and lower leg during walking gait. In order to achieve this, a new marker set was established, consisting of 25 markers applied on the shoe and skin surface, which informed a four segment kinematic model of the foot–shoe complex and lower leg. Three independent experiments were conducted to determine the reliability, accuracy and minimal detectable difference of the marker set and model. Inter-rater reliability of marker placement on the shoe was proven to be good to excellent (ICC = 0.75–0.98) indicating that markers could be applied reliably between raters. Intra-rater reliability was better for the experienced rater (ICC = 0.68–0.99) than the inexperienced rater (ICC = 0.38–0.97). The accuracy of marker placement along each axis was <6.7 mm for all markers studied. Minimal detectable difference (MDD90) thresholds were defined for each joint; tibiocalcaneal joint – MDD90 = 2.17–9.36°, tarsometatarsal joint – MDD90 = 1.03–9.29° and the metatarsophalangeal joint – MDD90 = 1.75–9.12°. These thresholds proposed are specific for the description of shod motion, and can be used in future research designed at comparing between different footwear.
Resumo:
To describe barefoot, shod and in-shoe kinematics during stance phase of walking gait in a normal arched adult population. An equal sample of males and females (n = 24) was recruited. In order to quantify the effect of footwear independent of technical design features, an ASICS shoe (Onitsuka Tiger-Mexico 66, Japan) was used in this study. Markers were applied to three conditions; barefoot, shod, and in-shoe. The calibration markers were used to define static pose. The order of testing was randomised. Participants completed five trials in each condition. Kinematic data were captured using a 12 camera VICON MX40 motion capture system at 100 Hz and processed in Visual3D. A previously developed model was used to describe joint angles [1]. A univariate two-way ANOVA was used to identify any differences between the pairs of conditions. Post-hoc Sheffé tests were used to further interrogate the data for differences. At peak hallux dorsiflexion (Figure 1), during propulsion, the metatarsophalangeal joint (MPTJ) was significantly more dorsiflexed in the barefoot condition compared to the shod condition (p = 0.004). At the same gait event, the tibiocalcaneal joint (TCJ) was significantly more plantarflexed than both the shod and in-shoe conditions (p < 0.001), and the tarsometatarsal joint (TMTJ) was significantly less dorsiflexed in the barefoot condition compared to the shod and in-shoe conditions (p < 0.001). The findings of the current study demonstrate that footwear has significant effects on sagittal plane MPTJ joint dorsiflexion at peak hallux dorsiflexion, which results in compensations at proximal foot joints.
Resumo:
Background Improvised explosive devices have become the characteristic weapon of conflicts in Iraq and Afghanistan. While little can be done to mitigate against the effects of blast in free-field explosions, scaled blast simulations have shown that the combat boot can attenuate the effects on the vehicle occupants of anti-vehicular mine blasts. Although the combat boot offers some protection to the lower limb, its behaviour at the energies seen in anti-vehicular mine blast has not been documented previously. Methods The sole of eight same-size combat boots from two brands currently used by UK troops deployed to Iraq and Afghanistan were impacted at energies of up to 518 J, using a spring-assisted drop rig. Results The results showed that the Meindl Desert Fox combat boot consistently experienced a lower peak force at lower impact energies and a longer time-to-peak force at higher impact energies when compared with the Lowa Desert Fox combat boot. Discussion This reduction in the peak force and extended rise time, resulting in a lower energy transfer rate, is a potentially positive mitigating effect in terms of the trauma experienced by the lower limb. Conclusion Currently, combat boots are tested under impact at the energies seen during heel strike in running. Through the identification of significantly different behaviours at high loading, this study has shown that there is rationale in adding the performance of combat boots under impact at energies above those set out in international standards to the list of criteria for the selection of a combat boot.
Resumo:
The house advantage for Baccarat is known, hence the theoretical win can be determined. What is impractical to theoretically determine is the frequency and financial implications of extreme events, for example, prolonged winning streaks coupled with various betting patterns. The simulation herein provides such granularity. We explore the effect of following the „hot hand‟, that is, rapidly escalating bets when players are on a winning streak. To minimize their exposure, casino management sets a table bet maximum as well as a table differential. These figures can and do serve as a means to differentiate one casino from another. As the allowable bet maximum increases so does the total amount bet, which increases the theoretical winnings, thus suggesting that a high bet limit and differential is beneficial for the house. However, the greater are these amounts, the greater the number of shoes that end with players losing relative to a constant betting scenario (the number of times a player wins at all can drop from ~47% of the time to less than a quarter); but there will, on occasion, be more extreme payouts to players. This simulation is therefore intended to help casino managers set betting limits that maximize total winnings while bearing in mind both the likelihood and magnitude of negative outcomes to the casino.